Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
mk quên nữa, CMR là chứng minh rằng nhé. Mí bn giúp mk nhanh nhanh nha!Thank you!
Có : S = (2017+2017^2)+(2017^3+2017^4)+.....+(2017^9+2017^10)
= 2017.(1+2017)+2017^3.(1+2017)+......+2017^9.(1+2017)
= 2017.2018+2017^3.2018+......+2017^9.2018
= 2018.(2017+2017^3+....+2017^9) chia hết cho 2018
Tk mk nha
Dãy số trên có 10 số hạng chia thành 5 nhóm mỗi nhóm có 2 số hạng
Ta có:
S=(2017+2017^2)+(2017^3+2017^4)+..........+(2017^9+2017^10)
S=(2017.1+2017.2017)+.........+(2017^9.1+2017^9.2017)
S=2017.(2017+1)+.....+2017^9.(2017+1)
S=2017.2018+......+2017^9.2018
S=2018.(2017+.....+2017^9)
=>S chia hết chp 2018
k cho tớ nha!!!!!
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
1) Số cần tìm là: 3
2) 2354 X 9 = 21186
3) ( "b" ở đâu ra vậy bạn ? )
4) Đăt S = 3^(n+2) - 2^(n+2) + 3^n - 2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
=> S chia hết cho 10.
Ta có: B=2+22+23+...+22018
=(2+22)+(23+24)+...+(22017+22018)
=2(1+2)+23(1+2)+...+22017(1+2)
=2.3+23.3+...+22017.3
Vì 3\(⋮\)3 nên 2.3+23.3+...+22017.3 chia hết cho 3
hay B chia hết cho 3
Vậy B chia hết cho 3.