Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(2005^{2006}\) là số lẻ
và \(2007^{2006}\) là số lẻ
nên \(2005^{2006}+2007^{2006}⋮2\)
a: Vì \(2061m⋮9\)
và \(5013n⋮9\)
nên \(2061m+5013n⋮9\)
Bài 1:
abc chia hết cho 27
⇒100a+10b +c chia hết cho 27
⇒10.(100a+10b+c) chia hết cho 27
⇒1000a+100b+10c chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b+10c+a =bca chia hết cho 27
(Chúc bạn học tốt)
A= 2005^n + 60^n - 1897^n - 168^n
cm A chia hết 4:
2005^n ≡ 1 (mod 4)
1897^n ≡ 1 (mod 4)
=> A ≡ 1 +0 - 1+0 =0 (mod 4)
=> A chia hết 4
cm A chia hết 3:
2005^n ≡ 1 (mod 3), 1897^n ≡ 1 (mod 3)
=> A ≡ 1 +0 -1 +0 =0 (mod 3)
=> A chia hết 3
cm A chia hết 167
2005^n ≡ 1 (mod 167)
1697^n ≡ 60^n (mod 167)
168^n ≡ 1 (mod 167)
=> A ≡ 1 +60^n -60^n -1 =0 (mod 167)
=> A chia hết 4,3,167 =. A chia hết 2004
a)
=mn(m-n)(m+n)
Nếu 1 trg 2 số chia hết cho 3=> đpcm
Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)
Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)
Vậy mn(m^2-n^2) chia hết cho 3
b) Có 2005^2006 lẻ; 2006^2005 chẵn
Nếu n lẻ=> n+2005^2006 chẵn
Nếu n chẵn => n+2006^2005 chẵn
=> đều chia hết cho 2
=> đpcm.