Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
=mn(m-n)(m+n)
Nếu 1 trg 2 số chia hết cho 3=> đpcm
Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)
Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)
Vậy mn(m^2-n^2) chia hết cho 3
b) Có 2005^2006 lẻ; 2006^2005 chẵn
Nếu n lẻ=> n+2005^2006 chẵn
Nếu n chẵn => n+2006^2005 chẵn
=> đều chia hết cho 2
=> đpcm.
có (n+2003^2004)
nếu n là số lẻ thì(n+2003^2004) là số chẵn
nếu n là số chẵn thì(n+2003^2004) là số lẻ
có (n+2003^2004)
nếu n là số lẻ thì(n+2003^2004) là số lẻ
nếu n là số chẵn thì(n+2003^2004) là số chẵn
chẵn x lẻ =chẵn
lẻ x chẵn=chẵn
=>(n+2003^2004)x(n+2004^2005) chia hết cho 2
n \(\in\) N* suy ra :
Trường hợp 1: n là số chẵn => n=2k. Ta có:
32k+3+32k+2+22k+3+22k+2 = 32.3k+3+32.3k+2+22.2k+2 = 3.(3+1+3+1)+3k+3k+2.(1+2+1)+2k
chia hết cho 6.
Trường hợp 2; b là số lẻ => n=2k+1. Ta có: (tương tự)
Ta có
5^n+2-2^n+3+5^n-2^n+2-2^n
=(5^n+2+5^n)-(2^n+3+2^n+2+2^n)
=5^n(25+1)-2^n(8+4+1)
= 5^n .26-2^n .13
=13(5^n .2-2^n) chia hết cho 13
A= 2005^n + 60^n - 1897^n - 168^n
cm A chia hết 4:
2005^n ≡ 1 (mod 4)
1897^n ≡ 1 (mod 4)
=> A ≡ 1 +0 - 1+0 =0 (mod 4)
=> A chia hết 4
cm A chia hết 3:
2005^n ≡ 1 (mod 3), 1897^n ≡ 1 (mod 3)
=> A ≡ 1 +0 -1 +0 =0 (mod 3)
=> A chia hết 3
cm A chia hết 167
2005^n ≡ 1 (mod 167)
1697^n ≡ 60^n (mod 167)
168^n ≡ 1 (mod 167)
=> A ≡ 1 +60^n -60^n -1 =0 (mod 167)
=> A chia hết 4,3,167 =. A chia hết 2004
cho hỏi mod là gì