K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

Ta có:  Vì  \(n\)  là số lẻ (theo giả thiết) nên  \(n\)  sẽ có dạng  \(2k+1\)

Các bước biến đổi:

\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)

                                       \(=\left(n^4-1\right)\left(n^8-1\right)\)

                                       \(=\left(n^4-1\right)^2\left(n^4+1\right)\)

\(n^{12}-n^8-n^4+1=\left(n^2-1\right)^2\left(n^2+1\right)^2\left(n^4+1\right)\)

Khi đó, ta xét  \(\left(n^2-1\right)^2\)  với  \(n=2k+1\)  thì  \(\left(n^2-1\right)^2\)  sẽ trở thành:  

\(\left(n^2-1\right)^2=\left(n-1\right)^2\left(n+1\right)^2=\left(2k+1-1\right)^2\left(2k+1+1\right)^2=4k^2\left(2k+2\right)^2=16k^2\left(k+1\right)^2=16\left[k\left(k+1\right)\right]^2\)

chia hết cho  \(16\)

Lại có:  \(k\left(k+1\right)\)  chia hết cho  \(2\)  (vì là tích của hai số nguyên liên tiếp) nên  \(\left[k\left(k+1\right)\right]^2\)   chia hết cho  \(4\)

Do đó,  \(\left(n^2-1\right)^2\)  chia hết cho  \(16.4=64\)  \(\left(1'\right)\)

Mặt khác,  với  \(n=2k+1\)  \(\Rightarrow\)  \(\left(n^2+1\right)^2\)  và  \(n^4+1\)  lần lượt là các số chẵn

nên  \(\left(n^2+1\right)^2\)  chia hết cho  \(2^2=4\)   \(\left(2'\right)\)

   và   \(n^4+1\)  chia hết cho  \(2\)   \(\left(3'\right)\)

Từ  \(\left(1'\right);\)  \(\left(2'\right)\)  và  \(\left(3'\right)\)  suy ra  \(n^{12}-n^8-n^4+1\)  chia hết cho \(512\)

14 tháng 2 2016

Đặt  \(P=111...111222...222\), ta có:

\(P=111...111222...222\)  (có \(100\)  số  \(1\)  và  \(100\)  số  \(2\) )

     \(=111...111000...000+222...222\)  (có   \(100\)  số  \(1\),  \(100\)  số  \(0\)  và  \(100\)  số  \(2\) )

     \(=111...111.10^{100}+2.111...111\)  

\(P=111...111\left(10^{100}+2\right)\)  

Đặt  \(111...111=k\), \(\Rightarrow\)  \(9k=999...999\)  (có  \(100\)  số  \(9\) ) nên  \(9k+1=1000...000=10^{100}\) 

Do đó,  \(P=k\left(9k+1+2\right)=k\left(9k+3\right)=3k\left(3k+1\right)\)

Mà  \(3k\)  và  \(3k+1\)  lại là  \(2\)  số tự nhiên liên tiếp nên suy ra điều phải chứng minh.

17 tháng 11 2022

b: 9^2n có chữ số tận cùng là 1

=>9^2n+14 có chữ số tận cùng là 5

=>9^2n+14 chia hết cho 5

c: n(n^2+1)(n^2+4)

=n(n-2)(n-1)(n+1)(n+2)+10n^3

Vì n;n-2;n-1;n+1;n+2 là 5 số liên tiếp

nên n(n-2)(n-1)(n+1)(n+2) chia hết cho 5

=>n(n^2+1)(n^2+4) chia hết cho 5

 

18 tháng 7 2017

Ta có: A =n^12-n^8-n^4+1 
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2 
=(n^4+1)[(n^2+1)(n^2-1)]^2 
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1) 
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64 
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8 
Do đó : A chia hết cho 64*8=512

18 tháng 7 2017

a, Ta có m là số nguyên chẵn

=> m có dạng 2k 

=> m3+20m=(2k)3+20.2k

=8k3+40k=8k(k2+5)

Cần chứng minh k(k2+5) chia hết cho 6

Nếu k chẵn => k(k2+5) chia hết cho 2

Nếu k lẻ =>k2 lẻ=> k2+5 chẵn=> k(k2+5) chia hết cho 2

Nếu k chia hết cho 3 thì k(k2+5) chia hết cho 3

Nếu k chia 3 dư 1 hoặc dư 2 thì 

k có dạng 3k+1 hoặc 3k+2

=> (3k+1)[(3k+1)2+5)]

=(3k+1)(9k2+6k+6) Vì 9k2+6k+6 chia hết cho 3 

=> k(k2+5) chia hết cho 3

Nếu  k chia 3 dư 2 

=> k có dạng 3k +2

=> k(k2+5)=(3k+2)[(3k+2)2+5]

=(3k+2)(9k2+12k+9)

Vì 9k2+12k +9 chia hết cho 3

=> k(k^2+5) chia hết cho 3

=> k(k2+5) chia hết cho 6

=> 8k(k2+5) chia hết cho 48

=> dpcm

2 tháng 8 2017

a) \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=x^4+2x^3+x^2+4x^2+4x-12\)

\(=x^4-x^3+2x^3-2x^2+x^3-x^2+2x^2-2x+6x^2-6x+12x-12\)

\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+x^2\left(x-1\right)+2x\left(x-1\right)+6x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x^3+ 2x^2+x^2+2x+6x+12\right)\left(x-1\right)\)

\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)-24\)

\(=x^4+x^3+2x^3+2x^2+3x^3+3x^2+6x^2+6x+4x^3+4x^2+8x^2+8x+12x^2+12x+24x+24\)

\(=x^4+5x^3+5x^3+5x^2+10x^2+50x\)

\(=x^2\left(x^2+5x\right)+5x\left(x^2+5x\right)+10\left(x^2+5x\right)\)

\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\).

2 tháng 8 2017

Bài 1:

a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=\left(x^2+x\right)^2+2.2\left(x^2+x\right)+4-16\)

=\(\left(x^2+x+2\right)^2-4^2\)

=\(\left(x^2+x-2\right)\left(x^2+x+6\right)\)

b,\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

=\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\) (1)

Đặt \(x^2+5x+5=a\) thay vào (1) đc:

(1) = \(\left(a-1\right)\left(a+1\right)-24=a^2-25\)

\(=\left(a-5\right)\left(a+5\right)\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

Bài 2:

\(a,n^2+4n+3=n^2+n+3n+3\)

\(=n(n+1)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)Đặt \(n=2k+1\)

\(\Rightarrow\left(n+1\right)\left(n+3\right)=\left(2k+2\right)\left(2k+4\right)\)

Mà tích của 2 số nguyên chẵn liên tiếp thì chia hết chia hết cho 8

\(\Rightarrowđpcm\)

b,\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)\(=\left(n+3\right)\left(n^2-1\right)\)\(=\left(n+3\right)\left(n+1\right)\left(n-1\right)\)

Mà 48 = 24.3

Đặt \(n=2k+1\) thì

(1) = \(\left(2k+4\right)\left(2k+2\right)2k\)

Tích của 3 số nguyên chẵn liên tiếp thì chia hết cho 16 (I)

Tích của số chẵn liên tiếp thì có một số là bội của 3 (II)

(I);(II)\(\Rightarrow\)đpcm

c,512 = 29

\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)\(=(n^4-1)\left(n^8-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\left(n^4+1\right)\)Đặt \(n=2k+1\) thay vào đc:

\(2k\left(2k+2\right)\left(4k^2+4k+2\right)2k\left(2k+2\right)\).

\(\left(4k^2+4k+2\right)\left(16k^4+32k^3+24k^2+8k+2\right)\)Bạn tự chứng minh tiếp nhá!!

5 tháng 11 2018

\(9^{2n}+14\)

92n = 81n có chữ số tận cùng là 1

14 có chữ số tận cùng là 4

=> \(9^{2n}+14\) có chữ số tận cùng là 5 

=> \(9^{2n}+14\) chia hết cho 5 (đpcm)

29 tháng 11 2015

Đặt A = n4 -10n2 + 9 = (n4 -n2 ) - (9n2 - 9) = (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3)

Vì n lẻ nên đặt n = 2k + 1 (k ∈ Z) thì

A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2) ⇒ A chia hết cho 16 (1)

Và (k - 1).k.(k + 1).(k + 2) là tích của 4 số nguyên liên tiếp nên A có chứa bội của 2, 3, 4 nên A là bội của 24 hay A chia hết cho 24 (2)

Từ (1) và (2) suy ra A chia hết cho 16. 24 = 384

Vậy ...

tick nha

 

16 tháng 7 2018

đặt A=n^4 -10n^2+9

=n^4-n^2-9n^2+9

=(n^4-n^2)-(9n^2-9)

=n^2(n^2-1)-9(n^2-1)

=(n^2-1)(n^2-9)

=(n-1)(n+1)(n-3)(n+3)

vì A lẻ nên n=2k+1

(2k-2)2k(2k+2)(2k+4)

=16(k-1)k(k+1)(k+2) chia hết 16 (1)

ta có (k-1)k(k+1)(k+2) chia hết cho 24(tích 4 số tự nhiên liên tiếp) (2)

từ (1) và (2) suy ra A chia hết cho 384

vậy ... chia hết cho 384

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120