K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2015

Đặt A = n4 -10n2 + 9 = (n4 -n2 ) - (9n2 - 9) = (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3)

Vì n lẻ nên đặt n = 2k + 1 (k ∈ Z) thì

A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2) ⇒ A chia hết cho 16 (1)

Và (k - 1).k.(k + 1).(k + 2) là tích của 4 số nguyên liên tiếp nên A có chứa bội của 2, 3, 4 nên A là bội của 24 hay A chia hết cho 24 (2)

Từ (1) và (2) suy ra A chia hết cho 16. 24 = 384

Vậy ...

tick nha

 

16 tháng 7 2018

đặt A=n^4 -10n^2+9

=n^4-n^2-9n^2+9

=(n^4-n^2)-(9n^2-9)

=n^2(n^2-1)-9(n^2-1)

=(n^2-1)(n^2-9)

=(n-1)(n+1)(n-3)(n+3)

vì A lẻ nên n=2k+1

(2k-2)2k(2k+2)(2k+4)

=16(k-1)k(k+1)(k+2) chia hết 16 (1)

ta có (k-1)k(k+1)(k+2) chia hết cho 24(tích 4 số tự nhiên liên tiếp) (2)

từ (1) và (2) suy ra A chia hết cho 384

vậy ... chia hết cho 384

2 tháng 10 2020

\(n^4-10n^2+9=\left(n^4-9n^2\right)-\left(n^2-9\right)\)

\(=n^2.\left(n^2-9\right)-\left(n^2-9\right)=\left(n^2-1\right)\left(n^2-9\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)

Vì n lẻ \(\Rightarrow n=2k+1\)\(k\inℤ\))

\(\Rightarrow n^4-10n^2+9=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+3\right)\)

\(=2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\)

\(=16.k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)

\(=16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)\)

Vì \(k-1\)\(k\)\(k+1\)\(k+2\)là 4 số nguyên liên tiếp

\(\Rightarrow\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮24\)

\(\Rightarrow16.\left(k-1\right).k.\left(k+1\right).\left(k+2\right)⋮384\)

hay \(n^4-10n^2+9⋮384\)( đpcm )

23 tháng 8 2017

a. \(n^3-19n=n^3-n-18n=\left(n^2+1\right)n-18n=\left(n-1\right)n\left(n+1\right)-18n\)

Trong ba số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3

\(\Rightarrow\left(n-1\right)n\left(n+1\right)\) chia hết cho 3

Trong 3 số tự nhiên sẽ có ít nhất 1 số chia hết cho 2

\(\Rightarrow\left(n-1\right)n\left(n+1\right)\) chia hết cho 2

Vì ( 2; 3 ) = 1 \(\Rightarrow\left(n-1\right)n\left(n+1\right)\) chia hết cho 6

\(\Rightarrow\left(n-1\right)n\left(n+1\right)=6k\)

\(\Rightarrow\left(n-1\right)n\left(n+1\right)-18n=6\left(k-3n\right)\) chia hết cho 6

\(\Rightarrow n^3-19n\) chia hết cho 6 ( đpcm )

23 tháng 8 2017

b. Đặt \(B=n^4-10n^2+9=\left(n^4-n^2\right)\left(n^2-9\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

Vì n lẻ nên n = 2k +1 \(\left(k\in Z\right)\) thì:

\(B=\left(2k-2\right)2k\left(2k+2\right)\left(2k+4\right)=16\left(k-1\right)k\left(k+1\right)\left(k+2\right)\Rightarrow B⋮16\)

Và ( k -1 ). k. ( k +1).(k+2) là tích của 4 số nguyên liên tiếp nên B có chứa bọi của 2, 3, 4 => B là bội của 24 hay B chia hết cho 24 (2)

Từ (1) và (2)=>A chia hết cho 16.24=384 (đpcm)

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

11 tháng 11 2016

em cam on thay a

23 tháng 8 2017

34 à bạn ?

23 tháng 8 2017

uk bạn mình thấy trong đề cô đưa cho mình

15 tháng 2 2016

Ta có:  Vì  \(n\)  là số lẻ (theo giả thiết) nên  \(n\)  sẽ có dạng  \(2k+1\)

Các bước biến đổi:

\(n^{12}-n^8-n^4+1=n^8\left(n^4-1\right)-\left(n^4-1\right)\)

                                       \(=\left(n^4-1\right)\left(n^8-1\right)\)

                                       \(=\left(n^4-1\right)^2\left(n^4+1\right)\)

\(n^{12}-n^8-n^4+1=\left(n^2-1\right)^2\left(n^2+1\right)^2\left(n^4+1\right)\)

Khi đó, ta xét  \(\left(n^2-1\right)^2\)  với  \(n=2k+1\)  thì  \(\left(n^2-1\right)^2\)  sẽ trở thành:  

\(\left(n^2-1\right)^2=\left(n-1\right)^2\left(n+1\right)^2=\left(2k+1-1\right)^2\left(2k+1+1\right)^2=4k^2\left(2k+2\right)^2=16k^2\left(k+1\right)^2=16\left[k\left(k+1\right)\right]^2\)

chia hết cho  \(16\)

Lại có:  \(k\left(k+1\right)\)  chia hết cho  \(2\)  (vì là tích của hai số nguyên liên tiếp) nên  \(\left[k\left(k+1\right)\right]^2\)   chia hết cho  \(4\)

Do đó,  \(\left(n^2-1\right)^2\)  chia hết cho  \(16.4=64\)  \(\left(1'\right)\)

Mặt khác,  với  \(n=2k+1\)  \(\Rightarrow\)  \(\left(n^2+1\right)^2\)  và  \(n^4+1\)  lần lượt là các số chẵn

nên  \(\left(n^2+1\right)^2\)  chia hết cho  \(2^2=4\)   \(\left(2'\right)\)

   và   \(n^4+1\)  chia hết cho  \(2\)   \(\left(3'\right)\)

Từ  \(\left(1'\right);\)  \(\left(2'\right)\)  và  \(\left(3'\right)\)  suy ra  \(n^{12}-n^8-n^4+1\)  chia hết cho \(512\)

27 tháng 3 2016

1,

A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
 A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)