K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2020

bài nào cx hỏi z :))

BĐT cần chứng minh tương đương với :

\(x+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}+1>4\)

Áp dụng BĐT Cô-si,

Ta có : \(x+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}+1=\frac{x^2-1}{x}+\frac{x+1}{2x}+\frac{x+1}{2x}+\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}\)

\(\ge4\)

Dấu "=" xảy ra khi \(\frac{x^2-1}{x}=\frac{x+1}{2x}=\frac{4x^3}{\left(x-1\right)\left(x+1\right)^3}\)

giải đc cái trên là vô nghiệm nên dấu "=" không xảy ra

bạn thanh tùng làm giống mình đó

3 tháng 11 2016

Đặt \(a=x,b=\frac{1}{x}\) thì ta có ab = 1

\(a-b=x-\frac{1}{x}=\frac{x^2-1}{x}=\frac{\left(x-1\right)\left(x+1\right)}{x}\). Vì \(x>1\) nên ta có \(a-b>0\)

\(3\left(a^2-b^2\right)< 2\left(a^3-b^3\right)\)

\(\Leftrightarrow3\left(a-b\right)\left(a+b\right)< 2\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\Leftrightarrow\left(a^2+ab+b^2\right)>\frac{3}{2}\left(a+b\right)\) (chia cả hai vế cho \(a-b>0\))

\(\Leftrightarrow\left(a^2-\frac{3}{2}a+\frac{9}{16}\right)+\left(b^2-\frac{3}{2}b+\frac{9}{16}\right)+\frac{7}{8}>0\)(vì ab = 1)

\(\Leftrightarrow\left(a-\frac{3}{4}\right)^2+\left(b-\frac{3}{4}\right)^2+\frac{7}{8}>0\) (luôn đúng)

Vậy có đpcm.

3 tháng 11 2016

koooooooiuyfdfguhgfswaxrwgszdsxrfdtfg

24 tháng 11 2019

\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(P=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(P=\left(\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(P=\frac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-5x\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

\(P=\frac{4\sqrt{x}\left(2+5x\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

\(P=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)

\(P=\frac{-4x}{3-\sqrt{x}}\)

\(P=\frac{4x}{\sqrt{x}-3}\)

Có:

\(m\left(\sqrt{x}-3\right)P>x+1\)

\(\Leftrightarrow m\left(\sqrt{x}-3\right).\frac{4x}{\sqrt{x}-3}>x+1\)

\(\Leftrightarrow4mx>x+1\)

\(\Leftrightarrow4mx-x>1\)

\(\Leftrightarrow\left(4m-1\right)x>1\)

\(\Leftrightarrow x>\frac{1}{4m-1}\)

Lại có:

\(x>9\)

\(\Rightarrow\frac{1}{4m-1}< 9\)

\(\Leftrightarrow1< 9\left(4m-1\right)\)

\(\Leftrightarrow1< 36m-1\)

\(\Leftrightarrow10< 36m\)

\(\Leftrightarrow m< \frac{5}{18}\)

24 tháng 11 2019

Ấy, nhầm nha. 

Đoạn cuối là m<5/18

Vội quá gõ nhầm. 

9 tháng 6 2016

Đặt A=.....
Dễ dàng biến đổi \(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Có :\(\frac{x^2}{y-1}+4\left(y-1\right)\ge4x\)và \(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Khi đó :\(A\ge4x+4y-4\left(x-1\right)-4\left(y-1\right)=8\)
Dấu = xảy ra \(\Leftrightarrow x=y=2\)
Phần dấu = tớ làm hơi tắt. bạn nên tb rõ nhé 

9 tháng 6 2016

\(A=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^3-x^2+y^3-y^2}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}.\)

Áp dụng BĐT Côsy Schwarz \(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}\ge\frac{\left(a_1+a_2\right)^2}{b_1+b_2}\)(Bạn có thể chứng minh được theo Bunhiacopxki - hoặc xem về BĐT Côsy Schwarz trên mạng)

cho các số dương a1=x;a2=y;b2=x-1;b2=y-1. Ta có:

\(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}=\frac{\left(x+y\right)^2-4+4}{x+y-2}=x+y+2+\frac{4}{x+y-2}=\)

\(=4+\left\{\left(x+y-2\right)+\frac{4}{x+y-2}\right\}\)

Vì x+y-2 >0. Áp dụng BĐT Cô sy cho 2 số \(\left(x+y-2\right);\frac{4}{x+y-2}\)

\(A\ge4+\left\{\left(x+y-2\right)+\frac{4}{x+y-2}\right\}\ge4+2\sqrt{\left(x+y-2\right)\cdot\frac{4}{x+y-2}}=4+2\sqrt{4}=8\)

Vậy A>=8. Dấu bằng xảy ra khi x=y=2 (ĐPCM).

17 tháng 7 2020

\(\frac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)

\(\Leftrightarrow\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\ge8\)

\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)

By Titu's Lemma we have:

\(LHS\ge\frac{\left(x+y\right)^2}{x+y-2}\) and we need prove that:

\(\left(x+y\right)^2\ge8\left(x+y\right)-16\)

But the last inequalities is true. ( QED )

26 tháng 5 2016

Ta có: \(M=\frac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{9-x}:\frac{\sqrt{x}-2-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{x+3\sqrt{x}}{9-x}:\frac{4-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{9-x}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{4-\sqrt{x}}=\frac{x}{\sqrt{x}-4}\)

Khi x > 16 thì \(\sqrt{x}-4>0\), như vậy \(M>y\Leftrightarrow x>m-3x+1\Leftrightarrow4x-1>m\) với mọi x > 16. Vậy m < 15 thì \(M>y\) với mọi x > 16.

Chúc em học tốt ^^

26 tháng 5 2016

em cám ơn ạk

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)