Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách lớp 7 nà:)
\(\frac{1}{n.\left(n+1\right)^2}=\frac{1}{n.\left(n+1\right).\left(n+1\right)}< \frac{1}{n.n\left(n+1\right)}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\) (n>=2_
\(\text{Suy ra }VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
Mặt khác ta có công thức \(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]}{2}\) (n>= 2)
Suy ra \(VT< \frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}.\frac{1}{2}=\frac{1}{4}\left(\text{do }\frac{1}{n\left(n+1\right)}>0\right)\)
Vậy ta có đpcm
Gắt chưa??? :>> Dương Bá Gia Bảo
Tham khảo nè:
1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 2/3 chứng minh
k² > k² - 1 = (k-1)(k+1)
⇒ 1/k² < 1/[(k-1).(k+1)] = [1/(k-1) - 1/(k+1)]/2 (*)
Áp dụng (*), ta có:
1/2² + 1/3² + 1/4² + ... + 1/n²
< 1/2² + 1/(2.4) + 1/(3.5) + ... + 1/[(n-1).(n+1)]
= 1/2² + [1/2 - 1/4 + 1/3 - 1/5 + ... + 1/(n-1) - 1/(n+1)]/2
= 1/2² + [1/2 + 1/3 - 1/n - 1/(n+1)]/2
= 2/3 - [1/n + 1/(n+1)]/2 < 2/3
toán lớp mấy đây