\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Có: \(\frac{1}{n}-\frac{1}{n+a}\\ =\frac{n+a-n}{n\cdot\left(n+a\right)}\\ =\frac{a}{n\left(n+a\right)}\)

Vậy ta được đpcm.

27 tháng 4 2019

thanks

31 tháng 3 2017

\(\frac{a}{n\left(n+a\right)}\left(n,a\in N\right)\)

\(=\frac{n+a-n}{n\left(n+a\right)}\)

\(=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}\)

\(=\frac{1}{n}-\frac{1}{n+a}\)

\(\rightarrowđpcm.\)

12 tháng 5 2017

vl hay nhưng hỏi câu này mới cực hay

rút gọn

a.a.a.a.a.a.a.a.a=bao nhiêu

17 tháng 3 2018

\(A.\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\left(ĐPCM\right)\)

\(B.\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n.\left(n+a\right)}-\frac{n}{n.\left(n+a\right)}=\frac{a}{n.\left(n+a\right)}\left(ĐPCM\right)\)

Tham khảo nha !!!! 

17 tháng 3 2018

a, 

\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

b,

\(\frac{a}{n\left(n+a\right)}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

13 tháng 5 2016

Xét VP,ta có:

\(VP=\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)

\(VT=\frac{a}{n\left(n+a\right)}\)

=>VT=VP

=>\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)

24 tháng 4 2017

de nay kho nhi

3 tháng 5 2017

Bài 2 a:

\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Mà tích 3 số nguyên liên tiếp chia hết cho 3,  suy ra A chia hết cho 3

25 tháng 5 2020

a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)

+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng

=> (@@) đúng với n = 1 

+) G/s (@@) đúng cho đến n 

+) Ta chứng minh (@@ ) đúng với n + 1 

Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)

\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)

=>  (@@) đúng với n + 1

Vậy (@@ ) đúng với mọi số tự nhiên n khác 0

26 tháng 5 2020

b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)

Ta chứng minh (@) đúng  với n là số tự nhiên khác 0 quy nạp theo n 

+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng 

=> (@) đúng với n = 1 

+) G/s (@) đúng cho đến n 

+) Ta cần chứng minh (@) đúng với n + 1 

Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)

=> (@) đúng với n + 1 

Vậy (@) đúng với mọi số tự nhiên n khác 0.

31 tháng 3 2017

\(H=\frac{1}{a^2}+\frac{2}{a^3}+\frac{3}{a^4}+...+\frac{n}{a^{n+1}}\)

\(H=\frac{a^{n-1}+2.a^{n-2}+...+\left(n-1\right).a+n}{a^{n+1}}\)

\(H=\frac{1}{a^{n+1}}.\left[\left(a^{n-2}+a^{n-2}+a+1\right)+\left(a^{n-2}+a^{n-3}+...+a+1\right)+...+\left(a+1\right)+1\right]\)

Đặt \(Sn=1+a+a^2+...+a^n\)=>\(a.Sn=a+a^2+a^3+...+a^n+a^{n+1}\)

=> \(a.Sn-Sn=a^{n+1}-1\)=>\(Sn.\left(a-1\right)=a^{n+1}-1\)=>\(Sn=\frac{a^{n+1}-1}{a-1}\)

Khi đó \(H=\frac{1}{a^{n+1}}.\left[\frac{a^n-1}{a-1}+\frac{a^{n-1}-1}{a-1}+...+\frac{a^2-1}{a-1}+\frac{a-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1-\left(n+1\right)}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^n+a^{n-1}+...+a+1}{a-1}-\frac{n-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}-1}{\left(a-1\right)^2}-\frac{n-1}{a-1}\right]\)

\(H=\frac{1}{a^{n+1}}.\left[\frac{a^{n+1}}{\left(a-1\right)^2}-\frac{1}{a-1}-\frac{n+1}{a-1}\right]\)

\(H=\frac{1}{\left(a-1\right)^2}-\frac{1}{a^{n+1}.\left(a-1\right)^2}-\frac{n+1}{a^{n+1}.\left(a-1\right)}< \frac{1}{\left(a-1\right)^2}\)(đpcm)

Xong rồi đó , phù.......

3 tháng 9 2017

a) \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

b) \(\frac{1}{q}\left(\frac{1}{n}-\frac{1}{n+q}\right)=\frac{1}{q}\left(\frac{n+q}{n\left(n+q\right)}-\frac{n}{n\left(n+q\right)}\right)=\frac{1}{q}.\frac{q}{n\left(n+q\right)}=\frac{1}{n\left(n+q\right)}\)

3 tháng 9 2017

a/  Xét mẫu số VP_  n và n+1 là 2 số liên tiếp 

\(\Rightarrow\left(n,n+1\right)\)bằng 1

Thay vào đề bài     \(\frac{1}{n}-\frac{1}{n+1}\)bằng   \(\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}\)bằng \(\frac{1}{n\cdot\left(n+1\right)}\)

\(\Rightarrowđpcm\)

P/s _laptop ko gõ đc dấu