Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
ababab= ab*10101
Vì 10101 chia hết cho 3 nên ab*10101 chia hết cho 3
=>ababab chia hết cho 3
Ta có
\(n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)\)
\(=n.\left(n^2\left(n^2-1\right)-4\left(n^2-1\right)\right)=n.\left(n^2-4\right)\left(n^2-1\right)\)
\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)là 5 số liên tiếp
=>chia hết cho 120
n5-5n3+4n=n5-4n3-n3+4n=n3(n2-4)-(n3-4n)=n3(n2-4)-n(n2-4)=(n3-n)(n2-4)
rồi bạn c/m 1 trong 2 thừa số chia hết cho 120
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}.\left(3^2+1\right)+2^{n+1}.\left(2^2+2\right)\)
\(=3^n.3.2.5+2^{n+1}.6\)
\(=3^n.6.5+2^{n+1}.6\)
\(=6.\left(3^n.5+2^{n+1}\right)\)chia hết cho 6
=> điều cần chứng minh
Đặt biểu thức là A. Ta có:
Tổng các số hạng của A là: 100-1+1=100 (số hạng)
Nhóm 4 số hạng liên tiếp với nhau được 25 nhóm như sau:
A = (3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)
A = 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34) = (3+32+33+34)(3x+3x+4+...+3x+96)
=> A = 120.(3x+3x+4+...+3x+96)
=> A chia hết cho 120 với mọi x thuộc N
Ta có : 3^n+2 - 2^n+4 + 3^n + 2^n
= (3^n+2 + 3^n) - (2^n+4-2^n)
= 3^n-1.(3^3+3) - 2^n-1.(2^5-2) ( vì n nguyên dương nên n-1 >= 0 )
= 3^n-1.30 - 2^n-1.30
= 30.(3^n-1+2^n-1) chia hết cho 30
=> ĐPCM
Tk mk nha
Giải :
ababab có tổng các chữ số là a + b + a + b + a + b = 3a + 3b = 3(a + b) chia hết cho 3
Do đó : ababab chia hết cho 3
ababab