Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{^{^{2^2}}}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}=1-\frac{99}{100}<1\)
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
a; A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\) + ... + \(\dfrac{1}{\left(2n\right)^2}\)
A = \(\dfrac{1}{2^2}\).(\(\dfrac{1}{1^2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{n^2}\))
A = \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{2.2}\) + \(\dfrac{1}{3.3}\) + ... + \(\dfrac{1}{n.n}\))
Vì \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\); \(\dfrac{1}{3.3}\) < \(\dfrac{1}{2.3}\); ...; \(\dfrac{1}{n.n}\) < \(\dfrac{1}{\left(n-1\right)n}\)
nên A < \(\dfrac{1}{4}\).(\(\dfrac{1}{1}\) + \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + ... + \(\dfrac{1}{\left(n-1\right)n}\))
A < \(\dfrac{1}{4.}\)(1 + \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{n-1}\) - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(1 + 1 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{4}\).(2 - \(\dfrac{1}{n}\))
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{4n}\) < \(\dfrac{1}{2}\) (đpcm)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
Ta có: \(\left(2a+1\right)^2>\left(2a+1\right)^2-1\)
\(\Leftrightarrow\left(2a+1\right)^2>2a.\left(2a+2\right)\)
\(\Rightarrow\frac{1}{\left(2a+1\right)^2}< \frac{1}{2a.\left(2a+2\right)}\)(*)
ĐẶT \(A=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{\left(2a+1\right)^2}\)
Áp dụng (*), ta có:
\(A< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2a.\left(2a+2\right)}\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2a.\left(2a+2\right)}\right)\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2a}-\frac{1}{2a+2}\right)\)
\(\Leftrightarrow A< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{2a+2}\right)\)
\(\Leftrightarrow A< \frac{1}{4}-\frac{1}{4a+4}< \frac{1}{4}\)
Vậy ..........
Có : 3^2 = 2.4+1
5^2 = 4.6 +1
..........
(2a+1)^2 = 2a.(2a+2)+1
=> VT < 1/2.4 + 1/4.6 + .... + 1/2a.(2a+2)
2VT < 2/2.4 + 2/4.6 + .... + 2/2a.(2a+2)
= 1/2 - 1/4 + 1/4 - 1/6 + ..... 1/2a - 1/2a+2 = 1/2 - 1/2a+2 < 1/2
=> VT < 1/2 (ĐPCM)
\(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow P< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow P< 1-\frac{1}{100}\)
\(\Rightarrow P< \frac{99}{100}< 1\)
\(P=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}+\frac{1}{100}\)
\(P=1-\frac{1}{100}< 1\)
Vậy : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\left(đpcm\right)\)