Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y+z)(xy+yz+zx)=xyz
x2y+xyz+zx2+xy2+y2z+xyz+xyz+yz2+z2x=xyz
(x2y+xy2)+(xyz+zx2)+(y2z+xyz)+(yz2+z2x)+xyz=xyz
xy(x+y)+zx(y+x)+yz(y+x)+z2(y+x)+xyz=xyz
(x+y)(xy+xz+yz+z2)+xyz=xyz
(x+y)[(xy+xz)+(yz+z2)]+xyz=xyz
(x+y)[x(y+z)+z(y+z)]+xyz=xyz
(x+y)(x+z)(y+z)+xyz=xyz
(x+y)(x+z)(y+z)=xyz-xyz
(x+y)(x+z)(y+z)=0
=>\(\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\x=-z\\y=-z\end{matrix}\right.\)
Với x=-z
=>VT= x2015+y2015+z2015=(-z)2015+z2015+y2015=y2015
VP=(x+y+z)2015=(-z+y+z)2015=y2015
Vậy x2015+y2015+z2015=(x+y+z)2015 với (x+y+z)(xy+yz+zx)=xyz
Có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)
Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)
\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\)
\(\Leftrightarrow x=3\)
Vậy \(x=y=z=3\)
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
cậu hk lớp 8a hả