Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow x=y=z\)
Mà \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\Rightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\Leftrightarrow x^{2015}=3^{2015}\Rightarrow x=3\)
Vậy \(x=y=z=3\)
(x+y+z)(xy+yz+zx)=xyz
x2y+xyz+zx2+xy2+y2z+xyz+xyz+yz2+z2x=xyz
(x2y+xy2)+(xyz+zx2)+(y2z+xyz)+(yz2+z2x)+xyz=xyz
xy(x+y)+zx(y+x)+yz(y+x)+z2(y+x)+xyz=xyz
(x+y)(xy+xz+yz+z2)+xyz=xyz
(x+y)[(xy+xz)+(yz+z2)]+xyz=xyz
(x+y)[x(y+z)+z(y+z)]+xyz=xyz
(x+y)(x+z)(y+z)+xyz=xyz
(x+y)(x+z)(y+z)=xyz-xyz
(x+y)(x+z)(y+z)=0
=>\(\left[{}\begin{matrix}x+y=0\\x+z=0\\y+z=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\x=-z\\y=-z\end{matrix}\right.\)
Với x=-z
=>VT= x2015+y2015+z2015=(-z)2015+z2015+y2015=y2015
VP=(x+y+z)2015=(-z+y+z)2015=y2015
Vậy x2015+y2015+z2015=(x+y+z)2015 với (x+y+z)(xy+yz+zx)=xyz
ta có : x^2 + y^2 +z^2 = xy + yz + xz
=> 2x^2 + 2y^2 +2z^2 = 2xy + 2yz + 2xz
=> ( x^2 - 2xy + y^2) + ( y^2 - 2yz + z^2 ) + ( z^2 -2xz + x^2 ) =0
=> ( x-y )^2 + ( y-z )^2 + ( z -x)^2 =0
=> x =y=z
thay vào .......
Lời giải:
Ta có \(1=x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\)
\(\Leftrightarrow 3(x+y)(y+z)(z+x)=(x+y+z)^3-1=0\)
Do đó bắt buộc tồn tại một trong ba số \(x+y,y+z,z+x\) bằng $0$
Không mất tính tổng quát, giả sử \(x+y=0\Rightarrow z=1-(x+y)=1\)
Khi đó :
\(M=x^{2015}+y^{2015}+z^{2015}=(x+y)A+1^{2015}=0.A+1=1\)
Vậy \(M=1\)
Từ \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2-4xy-4xz+y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(2x-y-z\right)^2\ge0\\\left(y-3\right)^2\ge0\\\left(z-5\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-z\right)=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=5\end{matrix}\right.\)
Khi đó \(A=\left(4-4\right)^{2015}+\left(3-4\right)^{2015}+\left(5-4\right)^{2015}=0+1-1=0\)