K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Đặt A là biểu thức cần xét. 

Tổng các số hạng của A là: 100-1+1=100 (số hạng)

Nhóm 4 số hạng liên tiếm với nhau được 25 nhóm như sau:

A=(3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)

A= 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34)

=> A=(3+32+33+34)(3x+3x+4+...+3x+96) = 120.(3x+3x+4+...+3x+96)

=> A chia hết cho 120 với mọi x

5 tháng 2 2016

Đặt A = 3x+1 + 3x+2 + .... + 3x+100

 A = ( 3x+1 + 3x+2 + 3x+3 + 3x+4 ) + ( 3x+5 + 3x+6 + 3x+7 + 3x+8 ) + ..... + ( 3x+97 + 3x+98 + 3x+99 + 3x+100 )

 A = 3x+1.( 3 + 32 + 33 + 34 ) + 3x+5.( 3 + 32 + 33 + 34 ) + .... + 3x+97.( 3 + 32 + 3+ 34 )

⇒ A = 3x+1. 120 + 3x+5 . 120 + ..... + 3x+97 . 120

 A = 120.( 3x+1 + 3x+5 + 3x+9 + .... + 3x+97 )

Vì 120 ⋮ 120  A ⋮ 120 ( đpcm )

5 tháng 2 2016

 31 + 32 + .. + 3100 ( 100 số hạng )

Ta chia được 25 nhóm như sau : ( 3 + 32 + 33 + 34 ) + .. + ( 397 + 398 + 399 + 3100 )

                                             <=>  120  + .. + 396 . 120

Các số hạng đều chia hết cho 120  => biểu thức trên chia hết cho 120

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.

9 tháng 2 2018

Giải:

Ta có:

\(f\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-x^4+1-4x^3\)

\(\Leftrightarrow f\left(x\right)=\left(5x^3-x^3-4x^3\right)+\left(2x^4-x^4\right)+\left(-x^2+3x^2\right)+1\)

\(\Leftrightarrow f\left(x\right)=x^4+2x^2+1\)

\(\Leftrightarrow f\left(x\right)=\left(x^2\right)^2+2.x^2.1+1^2\)

\(\Leftrightarrow f\left(x\right)=\left(x^2+1\right)^2\)

\(x^2+1\ge1\forall x\)

\(\left(x^2+1\right)^2\ge1>0\forall x\)

Vậy đa thức trên không có nghiệm.

9 tháng 2 2018

Ta có: A=x4+2x2+1\(\ge1\) với mọi x => ĐPCM

28 tháng 3 2020

2) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=2^n.3^2-2^n.2^2+3^n-2^n\)

\(=2^n.9+2^n.4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)

28 tháng 3 2020

1) \(x+2y=3xy+3\)

\(\Rightarrow3xy+3-x-2y=0\)

\(\Rightarrow3xy-x+3-2y=0\)

\(\Rightarrow18xy-6x+18-12y=0\)

\(\Rightarrow6x\left(3y-1\right)+4-12y=-14\)

\(\Rightarrow6x\left(3y-1\right)-4\left(3y-1\right)=-14\)

\(\Rightarrow\left(6x-4\right)\left(3x-1\right)=-14\)

Bạn tự phân tích ra rồi tìm x, y nhé!