K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

Đặt A = 3x+1 + 3x+2 + .... + 3x+100

 A = ( 3x+1 + 3x+2 + 3x+3 + 3x+4 ) + ( 3x+5 + 3x+6 + 3x+7 + 3x+8 ) + ..... + ( 3x+97 + 3x+98 + 3x+99 + 3x+100 )

 A = 3x+1.( 3 + 32 + 33 + 34 ) + 3x+5.( 3 + 32 + 33 + 34 ) + .... + 3x+97.( 3 + 32 + 3+ 34 )

⇒ A = 3x+1. 120 + 3x+5 . 120 + ..... + 3x+97 . 120

 A = 120.( 3x+1 + 3x+5 + 3x+9 + .... + 3x+97 )

Vì 120 ⋮ 120  A ⋮ 120 ( đpcm )

5 tháng 2 2016

 31 + 32 + .. + 3100 ( 100 số hạng )

Ta chia được 25 nhóm như sau : ( 3 + 32 + 33 + 34 ) + .. + ( 397 + 398 + 399 + 3100 )

                                             <=>  120  + .. + 396 . 120

Các số hạng đều chia hết cho 120  => biểu thức trên chia hết cho 120

12 tháng 4 2018

Đặt A là biểu thức cần xét. 

Tổng các số hạng của A là: 100-1+1=100 (số hạng)

Nhóm 4 số hạng liên tiếm với nhau được 25 nhóm như sau:

A=(3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)

A= 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34)

=> A=(3+32+33+34)(3x+3x+4+...+3x+96) = 120.(3x+3x+4+...+3x+96)

=> A chia hết cho 120 với mọi x

13 tháng 12 2014

P=(3x+1)+(3x+2)+(3x+3)+...+(3x+100)=3x*3+3x*32+3x*33+...+3x*3100=3x*(3+32+33+34+...+3100)

P=3x[(3+32+33+34)+(35+36+37+38)+...+(397+398+399+3100)]

P=3x[3(1+3+32+33)+35(1+3+32+33)+...+397(1+3+32+33)]

Vì 1+3+32+33=120 nên trong [ ] chia hết cho 120 => P chia hết cho 120 (vì 1 thừa số của tích chia hết cho 120 thì tích đó chia hết cho 120)(đpcm)

 

13 tháng 12 2014

chia p cho 3x ta được kết quả là : 31 + 32 + 33 + 3+ ,,,,,,+ 3100  ( có 100 số  hạng )

ta chia được 25 nhóm như sau: ( 31 + 32 + 33 + 34) + ( 35 + 36 + 37 + 38 )+ ........ + ( 397 + 398 + 399 + 3100 )

                                                 <=>      120                +   34 ,( 120 )     +.....................+ 396 . ( 120 )

các số hạng trên đều chia hết cho 120 => biểu thức p chioa hết 120        

 

 

 

6 tháng 2 2016

3x . 3 + 3x . 32 + 3x . 33 +....+ 3x . 3100

3x (3 + 32 + 33 + 34) + 3x + 4 (3 + 32 + 33 + 34) + ....+ 3x + 96 (3 + 32 + 33 + 34)

(3x + 3x + 4 + ...+ 3x + 96) . (3 + 32 + 33 + 34)

(3x + 3x + 4 + ...+ 3x + 96) . 120 chia hết cho 120 (đpcm)

 

Câu 2 : \(f\left(x\right)=ax^2+bx+c=0\)

Vì theo đề:f(x)=0 với mọi giá trị của x nên t cho x nhận 3 giá trị tùy ý

Giả sử x=0;x=1;x=-1 là 3 giá trị đó.

Ta có:f(0)=a.02+b.0+c=c

f(1)=a.12+b.1+c=a+b+c

f(-1)=a.(-1)2+b.(-1)+c=a-b+c

Do đó c=0;a+b+c=0;a-b+c=0

=>a-b=0=>a=b

và a+b=0=>a=b=0

Vậy a=b=c=0

20 tháng 7 2018

mình ghi lộn 1 tí đề bài số 5 là CMR: xy chia hết cho 12

20 tháng 7 2018

1. a) Cho \(x^2-25=0\) 

\(\Rightarrow\left(x-5\right)\left(x+5\right)=0\) 

\(\Rightarrow\) x = 5 hoặc x = -5 

Vậy \(x=\pm5\)là nghiệm của đa thức đã cho.

b) Cho \(x^2+8x-9=0\)

\(\Rightarrow x^2-x+9x-9=0\)

\(\Rightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Rightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Rightarrow x=-9\) hoặc \(x=1\)

Vậy \(x=-9\) và \(x=1\) là nhiệm của đa thức đã cho.