K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

13+33+53+73

=(13+73)+(53+33)

=(1+7)(12+1.7+72)+(5+3)(52+5.3+32)

=8(12+1.7+72)+8(52+5.3+32)

=23(12+1.7+72)+23(52+5.3+32)

=23.(.....................) chia hết cho 23 (đpcm)

3 tháng 10 2015

 1+3^3+5^3+7^3 =1+27+125+343 =496

496 chia hết cho 23

(đpcm)

14 tháng 9 2018

a2 - a = a ( a - 1 )

mà a và a-1 là 2 số liên tiếp

=> 1 trong 2 số là số chẵn

=> a ( a - 1 ) chia hết cho 2 hay a2 - a chia hết cho 2

14 tháng 9 2018

Ta có : \(a^2-a=a\left(a-1\right)\)

Vì \(a\left(a-1\right)\)là tích 2 số nguyên liên tiếp nên

\(a\left(a-1\right)⋮2\)

\(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì \(a\left(a-1\right)\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên :

\(a\left(a-1\right)\left(a+1\right)⋮3\)

\(a^5-a=a\left(a^4-1\right)\)

\(=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)\(+5\left(a-1\right)a\left(a+1\right)\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)là tích 5 số nguyên liên tiếp

\(\Rightarrow\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)

\(\Rightarrow a^5-a⋮5\)

23 tháng 11 2016

xl mink gần ra oy 

2 tháng 7 2016

a chia 3 dư 1 suy ra a=3k+1 ( k thuộc N*)
b chia 3 dư 2 suy ra b=3m+2( m thuộc N*)
ab=( 3k+1)(3m+2)
=9km+6k+3m+2
=3(3km+3k+m)+2
mà 3(3km+3k+m) chia hết cho 3

suy ra 3(3km + 3k + m ) +2 chia 3 dư 2
Hay ab chia cho 3 dư 2

2 tháng 7 2016

xin lỗi, nhầm đề

14 tháng 2 2016

\(2b.\)  

Với mọi  \(m;n\in Z\), ta có:

\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

\(\text{*)}\) Xét  \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)

                                         \(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)

                                         \(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)

             \(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)

Vì  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  là tích của  \(5\)  số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2;3\)  và  \(5\) 

Mà \(\left(2;3;5\right)=1\)  

Do đó,  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2.3.5=30\)  \(\left(1\right)\)

Mặt khác,  \(m\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(6\)  (tích của  \(3\)  số nguyên liên tiếp)

         nên  \(5mn\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(30\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\) , suy ra  \(mn\left(m^4-1\right)\)  chia hết cho  \(30\)  \(\left(\text{*}\right)\)

Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\)  chia hết cho cho  \(30\)  \(\left(\text{**}\right)\)

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra  \(mn\left(m^4-n^4\right)\)  chia hết cho  \(30\)  với mọi  \(m;n\in Z\)

 

14 tháng 2 2016

Đề câu  \(a.\)  sai rồi nha bạn! 

Ví dụ, với  \(n=2\)  thì  \(3^{2.2+1}+2^{2.2+2}=3^5+2^6=307\)  không chia hết cho  \(7\)  (vô lí)

Hiển nhiên, với công thức tổng quát  \(3^{2n+1}+2^{2n+2}\)  sẽ không chia hết cho  \(7\)  với \(n=2\)

                                                   \(-------------\)

\(a.\)  \(3^{2n+1}+2^{n+2}=3^{2n}.3+2^n.2^2\)  

                                   \(=9^n.3+2^n.4\)

                                   \(=9^n.3-2^n.3+2^n.3+2^n.4\)

                                  \(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)

                                  \(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)

                                  \(=3\left(9-2\right)\left(9^{n-1}+9^{n-2}.2+9^{n-3}.2^2+...+2^{n-1}\right)+7.2^n\)

     \(3^{2n+1}+2^{n+2}=3.7M+7.2^n\) 

Vì  \(3.7M\) chia hết cho  \(7\)  và  \(7.2^n\)  chia hết cho  \(7\)  nên  \(3.7M+7.2^n\)  chia hết cho  \(7\)

Vậy,  \(3^{2n+1}+2^{n+2}\)  chia hết cho  \(7\)

 

11 tháng 5 2017

Bạn ghi sai đề ạ --.- mk sửa lại thành 

\(B=n^3\left(n^2-7\right)^2-36n\)

\(=n\left[n^2\left(n^2-7\right)^2-36\right]\)

\(=n\left[\left(n^3-7n\right)^2-6^2\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n\left(n+1\right)\left(n-3\right)\left(n+2\right)\left(n+3\right)\left(n-2\right)\left(n-1\right)\)

vì __________________________________________________________ là tích của 7 số nguyên liên tiếp suy ra B chia hết cho 105

15 tháng 9 2021

 mà bn ơi cái chỗ a 7 số tự nhiên liên tiếp làm các bước như nào vậy

10 tháng 9 2016

195,873

kết quả đó sai thì sửa giúp mình

17 tháng 7 2017

a, Ta có a(a-1)-(a+3)(a+2)

= a2-a-a2-5a-6

= -6a-6

= -6(a+1) chia hết cho 6 (đpcm)

b,Ta có a(a+2)-(a-7)(a-5)

= a2+2a-a2+12a+35

= 14a+35

= 7(a+5) chia hết cho 7 (đpcm0