K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

\(2b.\)  

Với mọi  \(m;n\in Z\), ta có:

\(mn\left(m^4-n^4\right)=mn\left[\left(m^4-1\right)-\left(n^4-1\right)\right]=mn\left(m^4-1\right)-mn\left(n^4-1\right)\)

\(\text{*)}\) Xét  \(mn\left(m^4-1\right)=mn\left(m^2-1\right)\left(m^2+1\right)\)

                                         \(=mn\left(m^2-1\right)\left[\left(m^2-4\right)+5\right]\)

                                         \(=mn\left(m^2-1\right)\left(m^2-4\right)+5mn\left(m^2-1\right)\)

             \(mn\left(m^4-1\right)=mn\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)+5mn\left(m-1\right)\left(m+1\right)\)

Vì  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  là tích của  \(5\)  số nguyên liên tiếp nên \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2;3\)  và  \(5\) 

Mà \(\left(2;3;5\right)=1\)  

Do đó,  \(m\left(m-1\right)\left(m+1\right)\left(m-2\right)\left(m+2\right)\)  chia hết cho  \(2.3.5=30\)  \(\left(1\right)\)

Mặt khác,  \(m\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(6\)  (tích của  \(3\)  số nguyên liên tiếp)

         nên  \(5mn\left(m-1\right)\left(m+1\right)\)  chia hết cho  \(30\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\) , suy ra  \(mn\left(m^4-1\right)\)  chia hết cho  \(30\)  \(\left(\text{*}\right)\)

Tương tự, ta cũng chứng minh \(mn\left(n^4-1\right)\)  chia hết cho cho  \(30\)  \(\left(\text{**}\right)\)

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra  \(mn\left(m^4-n^4\right)\)  chia hết cho  \(30\)  với mọi  \(m;n\in Z\)

 

14 tháng 2 2016

Đề câu  \(a.\)  sai rồi nha bạn! 

Ví dụ, với  \(n=2\)  thì  \(3^{2.2+1}+2^{2.2+2}=3^5+2^6=307\)  không chia hết cho  \(7\)  (vô lí)

Hiển nhiên, với công thức tổng quát  \(3^{2n+1}+2^{2n+2}\)  sẽ không chia hết cho  \(7\)  với \(n=2\)

                                                   \(-------------\)

\(a.\)  \(3^{2n+1}+2^{n+2}=3^{2n}.3+2^n.2^2\)  

                                   \(=9^n.3+2^n.4\)

                                   \(=9^n.3-2^n.3+2^n.3+2^n.4\)

                                  \(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)

                                  \(=3\left(9^n-2^n\right)+2^n\left(3+4\right)\)

                                  \(=3\left(9-2\right)\left(9^{n-1}+9^{n-2}.2+9^{n-3}.2^2+...+2^{n-1}\right)+7.2^n\)

     \(3^{2n+1}+2^{n+2}=3.7M+7.2^n\) 

Vì  \(3.7M\) chia hết cho  \(7\)  và  \(7.2^n\)  chia hết cho  \(7\)  nên  \(3.7M+7.2^n\)  chia hết cho  \(7\)

Vậy,  \(3^{2n+1}+2^{n+2}\)  chia hết cho  \(7\)

 

14 tháng 2 2016

\(2.\)  Tính chất: Trong  \(n\)  số nguyên liên tiếp có một  và chỉ một số chia hết cho  \(n\)

Giả sử \(n,\)  \(n+1,...,\)  \(n+1899\)  là dãy \(1900\) số tự nhiên liên tiếp \(\left(1\right)\)

Xét  \(1000\) số tự nhiên liên tiếp từ  \(n,\)  \(n+1,...,\)  \(n+999\)  \(\left(2\right)\)  thuộc dãy số  \(\left(1\right)\)

Theo tính chất trên, sẽ có một số chia hết cho  \(1000\)

Giả sử số đó là  \(n_0\), khi đó \(n_0\) có tận cùng là  \(3\) chữ số \(0\) và  \(m\)  là tổng các chữ số của \(n_0\)

Khi đó, ta xét  \(27\)  số tự nhiên gồm:

\(n_0,\)  \(n_0+9,\)  \(n_0+19,\)  \(n_0+29,\)  \(n_0+39,...,\)  \(n_0+99,\)  \(n_0+199,...,\)  \(n_0+899\)  \(\left(3\right)\)

Sẽ có tổng các chữ số gồm  \(27\)  số tự nhiên liên tiếp là  \(m,\)  \(m+1,\)  \(m+2,...,\)  \(m+26\)

Do đó,  có  \(1\)  số chia hết cho  \(27\)

Vậy,  trong  \(1900\)  số tự nhiên liên tiếp có  \(1\)  số có tổng các chữ số chia hết cho \(27\)

 

23 tháng 11 2016

xl mink gần ra oy 

6 tháng 11 2015

tick cho mình đi đã rồi mình bày cho nếu khôn thì đừng mơ nhé