Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một bài toán cổ điển:
A B C D E F .
Chứng minh rằng \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{AB^2}\)
Thôi t chỉ liên tưởng thế thôi, vào bài nào :vv
A B C D E F H H
Cần chứng minh \(\frac{1}{AE^2}+\frac{1}{AF^2}=\frac{1}{3}\Leftrightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{4}{3}\)
Ta có: AB//CF ( do ABCD là hình thoi ) \(\Rightarrow\frac{AB}{AE}=\frac{CF}{EF}\Leftrightarrow\frac{4}{AE^2}=\frac{CF^2}{EF^2}\)(theo định lý thales)
Tương tự ta cũng có: \(\frac{4}{AF^2}=\frac{CE^2}{EF^2}\)\(\Rightarrow\frac{4}{AE^2}+\frac{4}{AF^2}=\frac{CE^2+CF^2}{EF^2}\)
giờ chỉ cần chứng minh \(\frac{CE^2+CF^2}{EF^2}=\frac{4}{3}\Leftrightarrow EF=\frac{\sqrt{3\left(CE^2+CF^2\right)}}{2}\)(*)
Kẻ CH vuông góc với EF. Dễ dàng chứng minh góc CEF=45 và CFE=15
Trong tam giác vuông EHC:\(EH=CH.\cot45^0\)
Trong tam giác vuông FHC:\(FH=CH.\cot15\)\(\Rightarrow EF=CH.\left(\cot45^0+\cot15^0\right)\)
Tương tự ta có:\(CH=CE.\sin45^0\)\(\Rightarrow CE=\frac{CH}{\sin45^o}\)và \(CF=\frac{CH}{\sin15^o}\)
(*) được chứng minh khi \(4\left(\cot45+\cot15\right)^2=\frac{3}{\left(\sin45\right)^2}+\frac{3}{\left(\sin15\right)^2}\)
hình như nhầm ở đâu ý :< ứ gõ lại đâu
em học rất nhiều dạng chứng minh rồi nhưn chưa dạng nào như thế này hết
Bài này xoay quanh hằng đẳng thức sau: \(x^2+xa+xb+ab=\left(x+a\right)\left(x+b\right)\).
Thực vậy, theo giả thiết \(-d=a+b+c\) nên ta có \(ab-cd=ab+c\left(a+b+c\right)=\left(c+a\right)\left(c+b\right).\)
Tương tự, \(bc-ad=bc+a\left(a+b+c\right)=\left(a+b\right)\left(a+c\right),\)
\(ca-bd=ca+b\left(a+b+c\right)=\left(b+a\right)\left(b+c\right).\)
Do đó \(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}=\sqrt{\left(c+a\right)\left(c+b\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là một số hữu tỉ.
a,c,c<0 mà b không nhỏ hơn 0
Nên a+b+c>0
<=> b>|a+c|
P/s: Định troll hả, ko dễ nha bạn
2x2 - ( m + 4 )x + m = 0
Δ = b2 - 4ac = ( m + 4 )2 - 8m = m2 + 8m + 16 - 8m = m2 + 16
Vì m2 + 16 ≥ 16 > 0 ∀ m => Δ ≥ 16 > 0
Vậy phương trình luôn có nghiệm ( đpcm )
B1.
làm gì có thể loại 0 dưới mẫu
B2.
3-2-1=0 nên bn ko thể rút gọn 2 vế bằng cách chia 2 vế cho 3-2-1=0 vì làm j có thể loại 0 dưới mẫu
= 0 nhé !
mk lấy ví dụ :
cậu có không cái kẹo cậu chia cho 0 bạn vậy bạn còn lại 0 cái
đó chính là lý do 0 : 0 = 0