Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tai thời điểm t = 0,5s ta có
Li độ: x = 24.cos( π .0,5/2 + π ) = 24cos5 π /4 = -16,9 ≈ 17 cm
Vận tốc : v = - 24. π /2.sin( π .0,5/2 + π ) = -24.π/2.sin5 π /4 = 6 π 2 cm/s = 26,64 cm/s ≈ 27 cm/s
Gia tốc : a = - π / 2 2 .x = - π / 2 2 .(-16,9) = 41,6 cm/ s 2 ≈ 42 (cm/ s 2 )
Tốc độ trung bình = quãng đường đi được trong thời gian t chia cho thời gian đi.
\(v=\frac{s}{t}.\)
v min khi s min.
s min khi quãng đường đi được ứng với một cung tròn \(\widehat{aNb}\) lấy biên làm trung điểm. Như hình tròn ở dưới. (Nếu S max thì quãng đường đi được ứng với cung tròn lấy vị trí cân bằng làm trung điểm)
MNabphi
\(t=\frac{T}{6}\Rightarrow\widehat{aNb}=t.\omega=\frac{2T}{3}.\frac{2\pi}{T}=\frac{4\pi}{3}>\pi.\)
\(S_{min}=s_1\left(\pi\right)+s_{2min}\left(\frac{\pi}{3}\right)\)Do cung lớn hơn 180 độ ta tách \(\pi+\frac{\pi}{3}.\)
\(s_1\left(\pi\right)=2A.\) là quãng đường đi được ứng với cung 180 độ.
Tính quãng đường nhỏ nhất đi được ứng với cung 60 độ \(s_{2min}\left(\frac{\pi}{3}\right)\)
=> \(\varphi=\frac{\frac{\pi}{3}}{2}=\frac{\pi}{6}.\)
Tương ứng với cung tròn \(aNb\) là \(s_{2min}=2.MN=2.\left(A-A\cos\varphi\right)=2A\left(1-\cos\varphi\right).\)
\(s_{min}=s_1+s_2=2A+2A\left(1-\cos30\right)=9,07cm.\)
vận tốc trung bình là \(v=\frac{s}{t}=\frac{9,07}{\frac{2T}{3}}=13,6\)cm/s.
Gọi phương trình dao động là: \(x=A\cos\omega t\)
PT vận tốc là: \(v=x'=-\omega A\sin\omega t\)
Ta có: \(A\cos\omega t_0=2\)
Cần tìm:
\(v=-\omega A\sin\omega (t_0+0,5)\)
\(=-\omega A\sin(\omega .t_0+\dfrac{2\pi}{2}.0,5)\)
\(=-\omega A\sin(\omega .t_0+\dfrac{\pi}{2})\)
\(=-\dfrac{2\pi}{2} A\cos\omega t_0\)
\(=-\dfrac{2\pi}{2}.2=-2\pi(cm/s)\)
Chọn D
Gọi phương trình dao động \(x=A\cos\left(\omega t+\varphi\right).\left(1\right)\)
Chu kỳ T là thời gian thực hiện 1 dao động toàn phần.
=> \(T=\frac{\Delta t}{N}=\frac{100}{50}=2s.\)
=> \(\omega=\frac{2\pi}{T}=\pi.\)(rad/s)
Áp dụng công thưc mối quan hệ giữa li độ tức thời x, biên độ A và vận tốc tại vị trí li độ đó v là
\(A^2=x^2+\frac{v^2}{\omega^2}=20^2+\frac{\left(4\pi\sqrt{3}\right)^2}{\pi^2}=448\Rightarrow A=21,166cm.\)
Mình nghĩ bài của bạn số hơi xấu?:))))
Li độ tại thời điểm \(\left(t+\frac{1}{3}\right)s\) là
Bạn có 2 cách để làm thay t ở công thức (1) bằng t+1/3s.
Tuy nhiên mình hay dùng cách 2 đường tròn như sau
Thời điểm t vật có li độ 20 cm thêm 1/3 s nữa thì góc quay được là \(\varphi=\frac{1}{3}.\pi.\)
A 0 20 A 19 N M 10
Bài của bạn số xấu quá nên tìm góc cũng xấu.:))))))
\(\cos10^0=\frac{x}{A}\Rightarrow x=A\cos10^0\approx20,84cm.\)
Chu kì \(T=\dfrac{2\pi}{\omega}=0,5s\)
Trong thời gian 7/48s thì véc tơ quay đã quay một góc là:
\(\alpha=\dfrac{\dfrac{7}{48}}{0,5}.360=26,25^0\)
Biểu diễn dao động bằng véc tơ quay, ban đầu qua li độ \(2,5\sqrt 2\) và đang giảm
ứng với vị trí M như hình vẽ
M N
Lúc sau, véc tơ quay đến N, hình chiếu của N lên trục tọa độ sẽ cho biết li độ mới.
\(x=5.\cos(45-26,25)\approx4,73cm\)
@Thư Hoàngg: Bạn Quang Hưng nhầm trong việc tính góc α,
giá trị đúng phải là: \(\alpha = 105^0\), như vậy ban đầu véc tơ quay ở M quay 1050
sẽ đến N, khi đó ON tạo với Ox 1 góc là: 105 - 45 = 600
Suy ra: \(x=5.\cos(60^0)=2,5cm.\)
+ Vận tốc cực đại của dao động amax = ωA = 4π cm/s.
+ Tại thời điểm t = 0,25 vật có vận tốc
v = 2 2 v m a x = 2 π 2 cm/s
Thời điểm t = 0 ứng với góc lùi Δφ = ωΔt = 0,25π.
Biểu diễn các vị trí tương ứng trên đường tròn. Ta thu được: φ 0 = - π 2 rad
+ Phương trình dao động của vật
Đáp án C
THEO MÌNH LÀ A B C HOẶC D