K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\left(1\right)\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\left(2\right)\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(3\right)\)

từ (1),(2),(3) => \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(đpcm\right)\)

p/s: ghi sai đề r bn, b+c+d chứ ko pk b+c-d 

6 tháng 11 2018

phải là a+b+c hoặc b+c-d thì mới đúng

6 tháng 11 2018

bạn trả lời như bạn nói cho mình đi

Up ba, giải giúp mik dới !!!!!!!!!

7 tháng 11 2018

Do \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\hept{\begin{cases}\frac{a^3}{b^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\\\frac{b^3}{c^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\\\frac{c^3}{d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\end{cases}}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

22 tháng 10 2016

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

22 tháng 10 2016

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)