K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Mệnh đề sai.
Mệnh đề phủ định là: Với... chia hết cho 11.  P=1+2+...+n=((1+n)n)/2 ,n=11=> P chia hết cho 11 
Vậy tồn tại số tự nhiên n để P  chia hết cho 11 : )

19 tháng 7 2017

hix méo có ai làm đc à @@ hay là chỉ là cái lướt nhẹ qua = =

27 tháng 7 2017

an=a2 

ho 

a1=a2=1;an=a2n1+2an2 

C/m annguyên với mọi n

(Lúc trc mik ghi sai đề thông cảm nha các bạn h mik ghi đúng rồi các bạn giúp mình với)

Được cập nhật 25/07 lúc 08:54

Câu hỏi tương tự Đọc thêm Báo cáo
Toán lớp 9
 

Gửi câu trả lời của bạn

Chưa có ai trả lời c n1+2an2 

18 tháng 3 2018

Coi số lớn là 2 phần và 31 đơn vị và số bé là 1 phần :

Số lớn là : ( 367 - 31) : ( 1 + 2 ) x 2 + 31 = 255

Số bé là : 367 - 255 = 112

25 tháng 9 2019

Hướng dẫn:

+) Với n = 7k  ; k thuộc N

\(n^2+2n+3=\left(7k\right)^2+2.7k+3=7.A+3\)không chia hết cho 7

+) n= 7k +1

\(n^2+2n+3=\left(7k+1\right)^2+2.\left(7k+1\right)+3=7.A+\left(1+2+3\right)=7.B+6\)không chia hết cho 7

+) n = 7k+ 2...

+) n = 7k+3...

+) n= 7k + 4...

+) n= 7k+5...

+) n = 7k + 6 

\(n^2+2n+3=\left(7k+6\right)^2+2.\left(7k+6\right)+3=7.G+\left(6^2+2.6+3\right)=7.G+51\)không chia hết cho 7

Vậy \(n^2+2n+3\)không chia hết cho 7 vs mọi n thuộc N

21 tháng 11 2015

Hôm nay thứ 7 rồi

Dê !!!? - Khỏi làm ???!

2 tháng 7 2017

B1 a, Có n lẻ nên n = 2k+1(k E N)

Khi đó: n^2 + 7 = (2k+1)^2 +7 

= 4k^2 + 4k + 8

= 4k(k+1) +8 

Ta thấy k và k+1 là 2 số tự nhiên liên tiếp nên có ít nhất 1 số chia hết cho 2

=> k(k+1) chia hết cho 2 <=> 4k(k+1) chia hết cho 8

Mà 8 chia hết cho 8 <=> n^2 + 7 chia hết cho 8

\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)

\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)

Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc

\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)

\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)

\(\frac{y-1}{2}=\frac{y-0,5}{5}\)

\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)

Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc

\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)

Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)