Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{1995}-1=A=1+2+2^2+2^3+2^4...+2^{1994}\)
\(\left(1+2+2^2+2^3+2^4\right)=31\) chia hết cho 31
Số số hạng của A là 1995 chia hết cho 5
\(A=31.\left(1+2^5+2^{10}+..+2^{\frac{1995}{5}-5}\right)\)=> DPCM
d) Giải:
Ta có: \(\left\{{}\begin{matrix}2222\equiv-4\left(\text{mod }7\right)\\5555\equiv4\left(\text{mod }7\right)\end{matrix}\right.\)
\(\Rightarrow2222^{5555}+5555^{2222}\equiv\left(-4\right)^{5555}\) \(+4^{2222}\)
\(\equiv-4+4=0\left(\text{mod }7\right)\)
Mà \(\left(-4\right)^{5555}+4^{2222}=\left(-4\right)^{2222}\left(4^{3333}-1\right)\) \(⋮4^3-1=63⋮7\)
Vậy \(2222^{5555}+5555^{2222}⋮7\)
nhung ma cai do la VD thoi
con tren kia moi la bai mk can moi ng giup mk mun moi ng giai giong nhu z
Ta có : \(2\equiv1\left(mod31\right)\)
\(\Rightarrow2^{2018}\equiv1^{2018}\equiv1\left(mod31\right)\)
\(\Rightarrow2^{2018}-1\equiv0\left(mod31\right)\)
Vậy số dư của A cho 31 là 0
32 đồng dư với 1 ( mod 31 )
25 đồng dư với 1 ( mod 31 )
(25)399 đồng dư với 1 ( mod 31 )
21995 đồng dư với 1 ( mod 31 )
21995 - 1 đồng dư với 0 ( mod 31 )
=>21995 -1 chia hết cho 31