Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2+2^2+2^3+....+2^{59}+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+.....+2^{59}\left(1+2\right)\)
\(=2.3+2^3.3+....+2^{59}.3\)
\(=3\left(2+2^3+...+2^{59}\right)\)
Vì có cơ số là 3 nên \(=3\left(2+2^3+...+2^{59}\right)\)
Vậy : \(2+2^2+2^3+....+2^{59}+2^{60}\)
a ) A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019
A = ( 3 + 32 + 33 ) + ... + ( 32017 + 32018 + 32019 )
A = 3 . ( 1 + 3 + 32 ) + ... + 32017 . ( 1 + 3 + 32 )
A = 3 . 13 + ... + 32017 . 13
A = 13 . ( 3 + ... + 32017 ) \(⋮\)13
Do đó : A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019 \(⋮\)13
b ) Ta có : A = 3 + 32 + 33 + ... + 32017 + 32018 + 32019
A = 3 . ( 1 + 3 + 32 + ... + 32016 + 32017 + 32018 ) \(⋮\)3 ( 1 )
Ta lại có : A = 3 + 32 + 33 + ... + 32018 + 32019
A = 3 + 32 . ( 1 + 32 + 33 + ... + 32017 ) chia cho 9, dư 3 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là bình phương của một số tự nhiên
A=2+2²+2³+...+260A=2+2²+2³+...+260
⇔ A=(2+2²)+...+(259+260)A=(2+2²)+...+(259+260)
⇔ A=2.(1+2)+...+259.(1+2)A=2.(1+2)+...+259.(1+2)
⇔ A=2.3+...+259.3A=2.3+...+259.3
⇔ A=3.(2+..+259)A=3.(2+..+259)
⇒ A⋮ 3
A=2+2²+2³+...+260A=2+2²+2³+...+260
⇔ A=(2+2²+2³)+...+(258+259260)A=(2+2²+2³)+...+(258+259260)
⇔ A=2.(1+2+2²)+...+258.(1+2+2²)A=2.(1+2+2²)+...+258.(1+2+2²)
⇔ A=2.7+...+258.7A=2.7+...+258.7
⇔ A=7.(2+...+258A=7.(2+...+258
⇒ A⋮ 7
Hiện tại mình chưa tìm ra sao chia hết cho 5 nên bạn tự làm nhé cảm ơn bạn
b: \(=\left(52.5-1002.25\right)+\left(48.7-82.47-8.23\right)+318\)
\(=-949,75-42+318=-673.75\)
c: \(D=\left(-1\right)+\left(-1\right)+...+\left(-1\right)=-30\)
d: \(=17-\left\{15-\dfrac{2}{3}+5+\dfrac{4}{3}-13\right\}+\dfrac{2}{3}\)
\(=17-\left\{7+\dfrac{2}{3}\right\}+\dfrac{2}{3}=10\)
a)A=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2017+3^2018+3^2019)
A=(3+3^2+3^3)+3^3x(3+3^2+3^3)+...+3^2016x(3+3^2+3^3) suy ra A chia hết cho (3+3^2+3^3)
Mà (3+3^2+3^3)=39;39 chia hết cho 13 nên A chia hết cho 13
A = 1 - 2 + 3 - 4 + ... + 59 - 60
A = (1 - 2) + (3 - 4) + ... + (59 - 60)
A = -1 + (-1) + ... + (-1) có 30 số -1
A = -1.30
A = -30
\(B=\frac{-3}{20}-\frac{3}{200}-\frac{3}{2000}-\frac{3}{20000}\)
\(B=\frac{-3000}{20000}-\frac{300}{20000}-\frac{30}{20000}-\frac{3}{20000}\)
\(B=\frac{-3333}{20000}\)
Mk chỉ làm đc phần a thui nha bạn !
\(A=1-2+3-4+...+59-60\)
\(A=\left(1-2\right)+\left(3-4\right)+...+\left(59-60\right)\)
\(A=-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
Có tổng cộng 30 số \(\left(-1\right)\)
\(A=30.\left(-1\right)\)
\(A=-30\)
A= 1-2+3-4+...+59-60
=(1-2)+(3-4)+...+(59-60)
=-1+(-1)+...+(-1)
=(-1)*30
= -30
Đáp án : -30
( 1- 2 ) + ( 3 - 4 ) + ....+( 59 - 60 )
= ( -1 ) + ( -1 ) + .....+ ( -1 )
= Từ 1 đến 60 có 60 số. Vậy có 30 tổng ( số hạng ).
=> Nên tổng trên có kết quả là : ( -1 ) * 30
= -30
Vậy đáp án là -30.
\(A=2+2^2+......+2^{59}+2^{60}\)
\(A=2\left(1+2\right)+....+2^{59}\left(1+2\right)\)
\(A=2\cdot3+...+2^{59}\cdot3⋮3\)
\(2+2^2+2^3+....+2^{58}+2^{59}+2^{60}\)
\(=2\left(1+2+4\right)+....+2^{58}\left(1+2+4\right)\)
\(=2\cdot7+.....+2^{58}\cdot7⋮7\)
A=\(\frac{4}{3}+\frac{10}{3^2}+...+\frac{3^{98}+1}{3^{98}}\)
=> A>\(\frac{3}{3}+\frac{9}{9}+...+\frac{3^{98}}{3^{98}}\) = 1+1+..+1 =98
A=\(\frac{3}{3}+\frac{9}{9}+...+\frac{3^{98}}{3^{98}}\) +\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)> 1+1+..+1 = 98
Đặt B = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
=> 3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)
=>2B = 1-\(\frac{1}{3^{98}}\) <1
=> B<1
=>A<99
=>98<A<99
Ta có :
\(A=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+3^7+...+3^{60}\right)\)
\(=13\cdot\left(3+3^4+3^7+...+3^{60}\right)⋮13\)(ĐPCM)
Ta có : A=3+32+33+...+360
=(3+32+33)+(34+35+36)+...+(358+359+360)
=3(1+3+32)+34(1+3+32)+...+358(1+3+32)
=3.13+34.13+...+358.13
Vì 13 chia hết cho 13 nên 3.13+34.13+...+358.13 chia hết cho 13
=> A chia hết cho 13(đpcm)