K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

2008 đồng dư với 1(mod 3)

\(\Rightarrow\)2008b2 đồng dư với 1(mod 3)

mà 2007b2 chia hết cho 3

\(\Rightarrow\)a+(2007b2+1)=a+2008b2

\(\Rightarrow\)a+1+2007b2 chia hết cho 3

vì a+1 chia hết cho 3(gt)

    2007b2 chia hết cho 3 (2007 chia hết cho 3)

\(\Rightarrow\)a+2008b2 chia hết cho 3

24 tháng 8 2016

Vô lý làm gì có chuyện đó nà chứng minh

28 tháng 8 2016

mk ko biết nếu biết mk đã giúp bn từ lâu rùi .Sory nha!

31 tháng 10 2021

A=2+2²+2³+...+260A=2+2²+2³+...+260

⇔ A=(2+2²)+...+(259+260)A=(2+2²)+...+(259+260)

⇔ A=2.(1+2)+...+259.(1+2)A=2.(1+2)+...+259.(1+2)

⇔ A=2.3+...+259.3A=2.3+...+259.3

⇔ A=3.(2+..+259)A=3.(2+..+259)

⇒ A⋮ 3

 

A=2+2²+2³+...+260A=2+2²+2³+...+260

⇔ A=(2+2²+2³)+...+(258+259260)A=(2+2²+2³)+...+(258+259260)

⇔ A=2.(1+2+2²)+...+258.(1+2+2²)A=2.(1+2+2²)+...+258.(1+2+2²)

⇔ A=2.7+...+258.7A=2.7+...+258.7

⇔ A=7.(2+...+258A=7.(2+...+258

⇒ A⋮ 7

Hiện tại mình chưa tìm ra sao chia hết cho 5 nên bạn tự làm nhé cảm ơn bạn

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

23 tháng 7 2016

Do a,b nguyên tố > 3 => a,b không chia hết cho 3 => a2,b2 không chia hết cho 3

=> a2,b2 chia 3 cùng dư 1

=> a2 - b2 chia hết cho 3 (1)

Do a,b nguyên tố > 3 => a,b lẻ => a2,b2 lẻ 

=> a2,b2 chia 8 cùng dư 1

=> a2 - b2 chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => a2 - b2 chia hết cho 24 (đpcm)

27 tháng 6 2019

A chia hết cho 2 sẵn rồi 

CM A chia hết cho 30:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)

27 tháng 6 2019

Gợi ý;

B chia hết cho 5 sắn rồi

chia hết cho 6 nhóm 2 số vào

Chi hết cho 31 nhóm 3 số vào

4 tháng 11 2016

a ) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right).4\)

\(=8\left(n+1\right)\) chia hết cho 8

\(\Rightarrow\left(n+3\right)^2-\left(n-1\right)^2⋮8\)

b ) \(\left(2n+1\right)^2-1\)

\(=\left(2n+1-1\right)\left(2n+1+1\right)\)

\(=2n.\left(2n+2\right)\)

\(=2.2n\left(n+1\right)\)

\(=4n\left(n+1\right)\)

Ta có : \(n\left(n+1\right)\) là tích của hai số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

\(\Rightarrow4n\left(n+1\right)⋮8\).

c ) Gọi 2 số lẻ liên tiếp là \(2n+1\)\(2n-1\)

Ta có : \(\left(2n+1\right)^2-\left(2n-1\right)^2\)

\(=\left(2n+1+2n-1\right)\left(2n+1-2n+1\right)\)

\(=4n.2\)

\(=8n\) chia hết cho 8

Vậy .........