Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = n(n + 1)(2n + 1)
Ta thấy n(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2
=> A chia hết cho 2 (1)
Ta xét 3 trường hợp:
+ n chia 3 dư 1 => 2n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia 3 dư 2 => n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia hết cho 3 => A chia hết cho 3
Do đó A luôn chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 (Vì 2.3 = 6 và (2; 3) = 1)
Vậy...
a, ta thấy 2n+1;2n+2;2n+3 là 3 số tự nhiên liên tiếp
Mà trong 3 stn liên tiếp luôn có 1 số chia hết cho 3.
Vậy 2n+1;2n+2;2n+3 chia hết cho 3
b, 5+52+ ...+512
=(5+52+53)+...+(510+511+512)( 3 số hạng 1 ngoặc)
=(5.1+5.5+5.25)+...+(510.1+510.5+510.25)
=5.(1+5+25)+...+510.(1+5+25)
=5.31+...+510.31
=31.(5+...+531)
Vì 31 chia hết cho 31 =>31.(5+...+510) chia hết cho 31
Vâỵ 5+52+ ...+512 chia hết cho 31
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
Sai đề rồi nha
n=5
=> 2n+3=13 là số nguyên tố mà 2n+3-(2n-1)=4
=> 2n-1=9
Ko thỏa mãn
ra đề cho nên thân thì mk làm cho