K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

a, ta thấy 2n+1;2n+2;2n+3 là 3 số tự nhiên liên tiếp

Mà trong 3 stn liên tiếp luôn có 1 số chia hết cho 3.

Vậy 2n+1;2n+2;2n+3 chia hết cho 3

b, 5+52+ ...+512

=(5+52+53)+...+(510+511+512)( 3 số hạng 1 ngoặc)

=(5.1+5.5+5.25)+...+(510.1+510.5+510.25)

=5.(1+5+25)+...+510.(1+5+25)

=5.31+...+510.31

=31.(5+...+531)

Vì 31 chia hết cho 31 =>31.(5+...+510) chia hết cho 31

Vâỵ  5+52+ ...+512 chia hết cho 31

3 tháng 11 2017

Mình cũng làm giống bạn kia nha

k tui nha

thanks

17 tháng 12 2019

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

17 tháng 12 2019

a) Ta có:

(5^2n+1) + (2^n+4) + (2^n+1) = (25^n).5 - 5.(2^n) + (2^n).( 5 + 2^4 +2) = 5.( 25^n - 2^n ) + 23.2^n chia hết cho 23. 
 

 

Câu 3: 

a: \(\Leftrightarrow n-1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

b: \(\Leftrightarrow4n+2+1⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow4n-5=13k\left(k\in Z\right)\)

\(\Leftrightarrow n=\dfrac{13k+5}{4}\)

15 tháng 8 2015

Áp dụng a^n-b^n chia hết cho a-b với mọi n là số tự nhiên;a^n-1+b^n+1 chia hết cho a+b với mọi n là số tự nhiên

Đổi 7^4n=2401^n nữa là ra 3 câu

2 tháng 11 2016

52n+2 + 52n = 52n (25+1) = 52n . 26 chia hết 26

2 tháng 11 2016

\(5^2.5^{2n}+5^{2n}=5^{2n}.\left(5^2+1\right)=26.5^{2n}\)

chia het cho 26

Bài 1:

 ta có 3^3 = 27 chia 13 dư 1

=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1) 
5^2 = 25 chia 13 dư (-1)

=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2) 
Từ (1); (2)

=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0 
hay 3^2010+5^2010 chia hết cho 13. 

bài 1:

Ta có
32010=(33)6701670(mod13)32010=(33)670≡1670(mod13)
Mà 52010=(52)1005(1)1005(mod13)52010=(52)1005≡(−1)1005(mod13)
Từ đó suy ra 32010+5201032010+52010 chia hết cho 13