K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

Chép sai đề bài bạn ơi, phần mẫu số phải là a2+a-1 chứ. Coi lại nhé bạn.

17 tháng 3 2016

+1 nhé, ở mấu đấy.

17 tháng 1 2016

1.

Chưa phân loại

2.

Chưa phân loại

3.

ko bt

4.

Chưa phân loại

5.

ko bt

18 tháng 1 2016

Thiên Thảo copy nek cho copy vs

1. Chưa phân loại

2. Chưa phân loại

4. Chưa phân loại

AH
Akai Haruma
Giáo viên
14 tháng 1 2017

Lời giải:

Bài 1)

Nếu \(p^2-1\in\mathbb{P}\Rightarrow (p-1)(p+1)\in\mathbb{P}\)

Khi đó trong hai thừa số $p-1$ hoặc $p+1$ phải có một thừa số có giá trị bằng $1$, số còn lại là số nguyên tố. Vì $p-1<p+1$ nên \(p-1=1\Rightarrow p=2 \in\mathbb{P} \Rightarrow p+1=3\in\mathbb{P}(\text{thỏa mãn})\)

Khi đó \(8p^2+1=33\) là hợp số. Do đó ta có đpcm.

P/s: Hẳn là bạn chép nhầm đề bài khi thêm dữ kiện $p>3$. Với $p>3$ thì $p^2-1$ luôn là hợp số bạn nhé.

AH
Akai Haruma
Giáo viên
14 tháng 1 2017

Câu 2:

a) Câu này hoàn toàn dựa vào tính chất của số chính phương

Ta biết rằng số chính phương khi chia $3$ có dư là $0$ hoặc $1$. Mà \(p,q\in\mathbb{P}>3\Rightarrow \) $p,q$ không chia hết cho $3$. Do đó:

\(\left\{\begin{matrix} p^2\equiv 1\pmod 3\\ q^2\equiv 1\pmod 3\end{matrix}\right.\Rightarrow p^2-q^2\equiv 0\pmod 3\Leftrightarrow p^2-q^2\vdots3(1)\)

Mặt khác, vì số chính phương lẻ chia cho $8$ luôn có dư là $1$ nên

\(p^2\equiv 1\equiv q^2\pmod 8\Rightarrow p^2-q^2\equiv 0\pmod 8\Leftrightarrow p^2-q^2\vdots 8\)$(2)$

Từ $(1)$, $(2)$ kết hợp với $(3,8)=1$ suy ra \(p^2-q^2\vdots 24\)

b) Vì \(a,a+k\in\mathbb{P}>3\) nên $a,a+k$ phải lẻ. Do đó $k$ phải chẵn \(\Rightarrow k\vdots 2\) $(1)$

Mặt khác, từ điều kiện đề bài suy ra $a$ không chia hết cho $3$. Do đó $a$ chia $3$ dư $1$ hoặc $2$. Nếu $k$ cũng chia $3$ dư $1$ hoặc $2$ ( $k$ không chia hết cho $3$) thì luôn tồn tại một trong hai số $a+k$ hoặc $a+2k$ chia hết cho $3$ - vô lý vì $a+k,a+2k\in\mathbb{P}>3$

Do đó $k\vdots 3$ $(2)$

Từ $(1)$ và $(2)$ kết hợp $(2,3)=1$ suy ra $k\vdots 6$ (đpcm)

29 tháng 3 2016

Toán lớp 6 đó các bạn

Giải nhanh giùm mình nhé!ok

29 tháng 3 2016

Dễ mà

10 tháng 4 2016

vì 3n^2 chia hết cho 3 nên để A chia hết cho 3 thì ta CM 

n^3+2n=n*(n*n+2) vì n là số nguyên nên n có dạng 3k; 3k+1;3k+2(k thuộc Z)

nếu n=3k thì n*(n*n+2) luôn luôn chia hết cho 3

nếu n=3k+1 thì n*n=(3k+1)*(3k+1)=9k^2+3k+3k+1 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

nếu n=3k+2 thì n*n=(3k+2)*(3k+2)=9k^2+6k+6k+4 chia 3 dư 1 nên n*n+2 luôn luôn chia hết cho 3

vậy biểu thức trên luôn luôn chia hết cho 3 với mọi n thuộcZ

10 tháng 4 2016

câu b)để A chia hết cho 15 thì n^3+3n^2+2n phải chia hết cho 3;5(vì ƯCLN(3;5)=1)

Mà theo câu a thì A luôn luôn chia hết cho 3 với n thuộc Z

nên ta chỉ cần tìm giá trị của n để A chia hết cho5

để A chia hết cho 5 thì n^3 phải chia hết cho 5;3n^2 phải chia hết cho 5;2n phải chia hết cho 5

                                   nên n phải chia hết cho 5(vì ƯCLN(3;5)=1;ƯCLN(2;5)=1 nên n^3;n^2;n phải chia hết cho 5 nên ta suy ra n phải chia hết cho 5)

mà 1<n<10 nên n=5(n là số nguyên dương)

vậy giá trị của n thỏa mãn đề bài là 5

 

12 tháng 4 2016

Khó nhờ!

 

27 tháng 4 2016

Vì p+10 là SNT nên p không chia hết cho 2

Xét p=3 thì p+10=3+10=13 (thỏa)

                    p+14=3+14=17( thỏa)

Xét p>3 thì p có dạng 3k+1;3k+2(kEN*)

Nếu p có dạng 3k+1 thì p+14=3k+1+14=3k+15=3*(k+5)>3(hợp số )

Nếu p có dạng 3k+2 thì p+10=3k+2+10=3k+12=3*(k+4)>3(hợp số )

Vậy p=3

27 tháng 4 2016

3)a)Gọi d là ƯCLN(12n+1;30n+2)

Ta có 12n+1 chia hết cho d nên 5*(12n+1) chia hết cho d

           30n+2 chia hết cho d nên 2*(30n+2) chia hết cho d

Nên [5*(12n+1)-2*(30n+2)] chia hết cho d

hay (60n+5)-(60n+4) chia hết cho d

hay         1 chia hết cho d

nên d=1

Vì ƯCLN(12n+1;30n+2)=1 nên phân số\(\frac{12n+1}{30n+2}\)là phân số tối giản

17 tháng 2 2016

Bài 2:

a) Ta có:

\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)

\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)

\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)

\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)

Vậy \(S\) \(\text{⋮}\) \(-20\)

17 tháng 2 2016

Bài 1:

Ta có:

\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)

\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)

\(=\left(-12\right).m^2.3.n^3\)

\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)

Xét: \(m^2\ge0\) với V m

3>0 nên \(m^2.3\ge0\) với V m

Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)

-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)

Vậy với n<0 và mọi m thì \(A\ge0\)

 

22 tháng 3 2016

p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

TH1: p=3k+1

\(\Rightarrow p^2=\left(3k+1\right)^2=\left(3k+1\right)3k+\left(3k+1\right)\)

\(=\left(3k+1\right)3k+3k+1=\left(3k+1+1\right)3k+1\) chia 3 dư 1

TH2: p=3k+2

\(\Rightarrow p^2=\left(3k+2\right)^2=\left(3k+2\right)3k+\left(3k+2\right).2\)

\(=\left(3k+2\right)3k+2.3k+2.2\)

\(=\left(3k+2\right)3k+2.3k+3+1\)

\(=3.\left[k\left(3k+2\right)+2k+1\right]+1\) chia 3 dư 1

Do đó bình phương của 1 số nguyên tố luôn chia 3 dư 1, nên trừ đi 1 sẽ chia hết cho 3

\(\Rightarrow p^2-1\text{⋮}3\)

Vậy nếu p là số nguyên tố lớn hơn 3 thì \(p^2-1\text{⋮}3\)