Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.để 2 số hạn đầu tiên lại,còn lại 99 số ta chia làm 33 nhóm mỗi nhóm có 3 số liên tiếp nhau.
Ta có \(=2+2^2+2^3+2^4+.....2^{100}\)
\(=2+2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+....+2^{98}\left(1+2+2^2\right)\)
\(=2+2.7+2^5.7+.....+2^{98}.7\)
\(\Rightarrow\)Tổng này chia 7 dư 2
bài 1
abcabc=abc.1001
có 1001chia hết cho 7
=>abc.1001 chia hết cho 7
còn chia hết cho 11 và 13 thì tương tự
bài 2
A=(2100+299+298)+...+(24+23+22)+21
A=(298.22+298.21+298.1)+....+(22.22+22.21+22.1)+21
A=298.(22+21+1)+...+22.(22+21+1)+21
A=298.7+...+22.7+21
A=(298+22).7 +21
có 7 chia hết co 7
=>(298+22).7 chia hết cho 7
=>Achia 7 dư 21
Ta có 62 = 31 . 2
Mà A = 2 + 22 + .... + 299 + 2100 \(⋮\)2 ( 1 )
A = 2 + 22 + .... + 299 + 2100
A = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
A = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 . ( 1 + 2 + 22 + 23 + 24 )
A = 2 . 31 + ... + 296 . 31 = 31 . ( 2 + ... + 296 ) \(⋮\)31 ( 2 )
Từ 1 và 2 => A chia hết cho 2 , A chia hết cho 31 => A chia hết cho 2 . 31 => A chia hết cho 62
Vậy A chia hết cho 62
A=(2+22+23+24+25)+(26+27+28+29+210)+...+(296+297+298+299+2100)
A=1.(2+22+23+24+25)+25(2+22+23+24+25)+...+295(2+22+23+24+25)
A= 1.62+25.62+...+295.62
A=62(1+25+...+295)
suy ra A chia hết cho 62
a) Đặt biểu thức trên là A, ta có:
A = 21 + 22 + 23 + 24 + ... + 299 + 2100
=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)
=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)
=> A = 21.3 + 23.3 + ... + 299.3
=> A = 3(21 + 23 + ... + 299)
=> A ⋮ 3
\(26=13.2\)
\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)
\(s=3.13+3^413+.....+3^{2012}.13\)
\(s=13.\left(3+3^4+....+3^{2012}\right)\)
\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)
\(s=3.4+3^3.4+....+3^{2015}.4\)
\(s=4.\left(3+3^3+.....+3^{2015}\right)\)
\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)
\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)
\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)
Ta có :
A=2 + 22 + 23 + ...... + 299 + 2100
=> A = (2 + 22) + (23 + 24) + ...... + (299 + 2100)
=> A = 2.(1 + 2) + 23.(1 + 2) + .... + 299.(1 + 2)
=> A = 2.3 + 23.3 + .... + 299.3
=> A = 3.(2 + 23 + .... + 299) chia hết cho 3(đpcm)
A=2+22+23+24+...+299+2100
=(2+22)+(23+24)+...+(299+2100)
=2.(1+2)+23.(1+2)+...+299.(1+2)
=2.3+23.3+...+299.3
=3.(2+23+...+299) chia hết cho 3
Chúc bạn học giỏi nha!!!!
K cho mik vs nhé toikomuonan
A=(2^1+2^2)+(2^3+2^4)+.....+(2^99+2^100)
A=(2+2^2)+2^2(2+2^2)+.....+2^98(2+2^2)
A=6+2^2.6+....+2^98.6
A=6+2^2.6+......+2^98.3.2
Vậy A chia hêt cho 3
Ta có
2(1+2)+23(1+2)+25(1+2)...299(1+2)
=3(2+23+25+..+299)
=> DPCM
Ta có:
\(2^1+2^2+2^3+.....+2^{99}+2^{100}\)
\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+......+\left(2^{99}+2^{100}\right)\)
\(=2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{98}.\left(1+2\right)\)
\(=2.3+2^2.3+.....+2^{98}.3\)
\(=3.\left(2+2^2+....+2^{98}\right)⋮3\left(đpcm\right)\)