Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
=>ĐPCM(Đá phải con ma)
=>Đùa chút thôi
( 2n + 2 ).( 2n + 4 ) chia hết cho 8
Chứng tỏ rằng vì :
Ta thấy n phải là số chẵn mà 2n + 2 đã là số chẵn
2n + 4 đã là số chẵn vì \(⋮\) cho 2
Nên chứng tỏ:
\(n+\left(2.4\right)⋮8\)
=> n + 8 chia hết cho 8
=> ( 2n + 2 ).( 2n + 4 ) chia hết cho 8
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
Đặt A = n(n + 1)(2n + 1)
Ta thấy n(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2
=> A chia hết cho 2 (1)
Ta xét 3 trường hợp:
+ n chia 3 dư 1 => 2n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia 3 dư 2 => n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia hết cho 3 => A chia hết cho 3
Do đó A luôn chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 (Vì 2.3 = 6 và (2; 3) = 1)
Vậy...
1, Ta có:\(\left(2n+7\right)⋮31\Rightarrow\left(2n+7\right)\inƯ\left(31\right)\)
\(\Leftrightarrow2n+7\in1;31\)
\(\Rightarrow n\in-3;12\)
Mà n là số tự nhiên nên n=12
Vậy n=12.
2,Ta có:n2+5n+5=n(n+5)+5
n(n+5) là tích của 2 số tự nhiên cách nhau 5 đơn vị nên tận cùng là 0,4,6.
Suy ra n(n+5)+5 tận cùng là 1;5;9.
Mà số chia hết cho 25 tận cùng là 25,50,75,00.
Nhưng trong các trường hợp trên thì trường hợp tận cùng là 5 cũng rất ít và nó càng không thể chia hết cho 25.
Vậy n2+5n+5 không chia hết cho 25.
a) TH1 : n chẵn => n + 10 chia hết 2
TH2 : n lẻ => n + 5 chẵn => chia hết 2
b) Do là tích 3 số tự nhiên liên tiếp nên sẽ có 1 số chia hết 2 và 1 số chia hết 3
c) Do n(n+1) là tích 2 số tự nhiên liên tiếp => Chia hết 2
TH1 : n = 3k => chia hết 3
TH2 : n = 3k +1 => 2n +1 = 6k + 2 +1 = 6k +3 chia hết 3
TH3 : n = 3k + 2 => n + 1 = 3k + 3 chia hết 3
=> ĐPCM
a ) Ta có 2 trường hợp :
TH1 : n là lẻ
Nếu n là lẻ thì ( n + 15 ) là chẵn chia hết cho 2 . Vậy ( n + 10 ) x ( n + 15 ) chia hết cho 2
TH2 : n là chẵn
Nếu n là chẵn thì ( n + 10 ) là chẵn chia hết cho 2 . Vậy ( n + 10 ) x ( n + 15 ) chia hết cho 2
b ) Ta có n , n + 1 , n + 2 là ba số tự nhiên ( hoăc số nguyên ) liên tiếp nên trong ba số đó chắc chắn có một số chẵn nên n( n + 1 ) ( n + 2 ) chia hết cho 2
Ta có n , n + 1 , n + 2 là ba số tự nhiên ( hoặc số nguyên ) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là là 0 , 1 , 2 nên n( + 1) ( n + 2 ) chia hết cho 3
c ) n( n + 1 ) ( 2n + 1 ) = n ( n + 1 ) ( n + 2 + n - 1 ) = n( n + 1 ) ( n + 2 ) + ( n - 1 ) ( n + 1 ) n
Ba số tự nhiên liên tiếp thì chia hết cho 2 , chia hết cho 3