K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2018

A=5+5^2+5^3+...+5^20

=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)

=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)

=30+5^2.30+5^4.30+5^6.30+..+5^18.30

=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)

Vậy A là bội của 30

31 tháng 10 2015

A = 5 + 52 + 53 + .. . + 58

A = (5 + 52)+ (53 +54)+ .. . +(57+ 58)

A= 30+52(5+52)+....+56(5+52)

A=30.(52+54+56) chia hết cho 30 => A là bội của 30

 

31 tháng 10 2018

A=5+52+53+........+58

A=(5.1+5.5)+(53.1+53.5)+......+(57.1+57.5)

A=5(1+5)+53(1+5)+.....+57(1+5)

A=5.6+53.6+....+57.6

A=5.6(1+52+54+56)

A=30(1+52+54+56)

=>Achia hết cho 30 => A là bội của 30

22 tháng 7 2016

Đề bài: Chứng tỏ rằng:

a) Giá trị của biểu thức A=5+52+53+...+59 là bội của 31

Ta có: A=5+52+53+...+59 

            =(5 + 52 + 53) + .... + (56 + 57 + 59)

            = 5.31 + .... + 56.31

            = 31.(5 + .... + 56) là bội của 31

25 tháng 7 2022

chữ mình hơi xấu thông cảm

2 tháng 8 2016

a) \(A=5+5^2+5^3+...+5^8\)

\(=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)

\(=\left(5+5^2\right)\cdot\left(1+5^2+...+5^6\right)\)

\(=30\cdot\left(1+5^2+...+5^6\right)\)chia hết cho 30.

b) \(B=3+3^3+3^5+3^7+...+3^{29}\)

\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{26}\cdot\left(3+3^3+3^5\right)\)

\(=\left(3+3^3+3^5\right)\cdot\left(1+3^6+...+3^{26}\right)\)

\(=273\cdot\left(1+3^6+3^{26}\right)\)chia hết cho 273.

24 tháng 10 2017

khó nhỉ ?

25 tháng 6 2015

a=(5+52) + 52(5+52) +...+ 56(5+52)

a= 30 + 52*30 +....+56*30

a=30(1+52+...+56) chia het cho 30

vay a chia het cho 30

8 tháng 6 2018

A=5+5^2+5^3+...+5^20

=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)

=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)

=30+5^2.30+5^4.30+5^6.30+..+5^18.30

=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)

Vậy A là bội của 30

19 tháng 2 2021

số số hạng của S là  (20-1)/1+1=20 ( số hạng)

có 5+25=5+5^2=30

chứng tỏ rằng giá trị của biểu thức A = 5 + 52 + 53 + ... + 520 là bội của 30

vì 20/2=10( nhóm) nên ta có 

S = (5+5^2) + ( 5^3 +5^4)+......+ (5^19 + 5^20)

S= 30 +5^2(5+5^2)+.....+5^18(5+5^2)

S=30.1+5^2.30+....+5^18.30

S=30(1+5^2+...+5^18)

vì 30 chia hết cho 30 và 1+5^2 +....+5^18 thuộc Z

suy ra S chia hết cho 30

suy ra S là bội của 30( đpcm)

vậy bài toán đã được chứng minh