Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
=> A = ( 3 - 32 ) + ( 33 - 34 ) + .... + ( 399 - 3100 )
=> A = 3.( 1 - 3 ) + 33.( 1 - 3 ) + ..... + 399.( 1 - 3 )
=> A = 3.( - 2 ) + 33.( - 2 ) + .... + 399.( - 2 )
=> A = - 2 .( 3 + 33 + ..... + 399 )
Vì - 2 ⋮ 2 => A ⋮ 2 ( đpcm )
a) Đặt biểu thức trên là A, ta có:
A = 21 + 22 + 23 + 24 + ... + 299 + 2100
=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)
=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)
=> A = 21.3 + 23.3 + ... + 299.3
=> A = 3(21 + 23 + ... + 299)
=> A ⋮ 3
\(26=13.2\)
\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)
\(s=3.13+3^413+.....+3^{2012}.13\)
\(s=13.\left(3+3^4+....+3^{2012}\right)\)
\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)
\(s=3.4+3^3.4+....+3^{2015}.4\)
\(s=4.\left(3+3^3+.....+3^{2015}\right)\)
\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)
\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)
\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)
Bài giải
Ta có :
\(1+3+3^2+3^3+3^4+...+3^9\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)
\(\Rightarrow\text{ ĐPCM}\)
Bài giải
\(1+3+3^2+3^3+3^4+...+3^9\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)
\(\Rightarrow\text{ ĐPCM}\)
S = (1 + 3) + (32+33)+.....+(398+399)
= 4 + 32 .(1 + 3) + .....+398.(1+3)
= 1 .4 + 32.4 + ..... +398.4
= 4.(1 + 32 + .... +398) chia hết cho 4
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
A= 2+22+23+24+25+...............299+2100
A = ( 2 + 22 + 23+24+25)+....+ ( 296+297+298+299+2100)
A = ( 2 + 22 + 23+24+25)+....+ 295( 2 + 22 + 23+24+25 )
A = 62 + ........ + 295 . 62
A = 62 . ( 1 + ..........+ 295 )
Vì 62 \(⋮\)62 nên A \(⋮\)62
Vậy A chia hết cho 62
Phân tích sao cho A có một thừa số là 62 hoặc chia hết cho 62 là được
=3+3^2+3^3+....+3^99+3^100
=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
=(1+3).3+(1+3).3^3.(1+3).3^5...(1+3).2^99
=4.3+4.3^3+4.3^5...4.2^99
Vậy,3+3^2+3^3+...+3^99+3^100 chia hết cho 4
=3+3^2+3^3+....+3^99+3^100
=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
=(1+3).3+(1+3).3^3. (1+3).3^5...(1+3).2^99
=4 . 3 + 4 . 3^3 + 4 . 3^5...4.2^99
Vậy:3 + 3^2 + 3^3 +...+ 3^99 +3^100 chia hết cho 4