K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

                                                     Bài giải

              Ta có : 

\(1+3+3^2+3^3+3^4+...+3^9\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)

\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)

\(\Rightarrow\text{ ĐPCM}\)

2 tháng 8 2019

                                       Bài giải

      \(1+3+3^2+3^3+3^4+...+3^9\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{98}+3^{99}\right)\)

\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^{98}\left(1+3\right)\)

\(=4+3^2\cdot4+3^4\cdot4+...+3^{98}\cdot4\)\(⋮\text{ }4\)

\(\Rightarrow\text{ ĐPCM}\)

19 tháng 10 2018

a)\(B=3+3^2+3^3+....+3^{30}\)

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{31}\)

\(\Rightarrow3B-B=\left(3^2+3^3+3^4+...+3^{31}\right)-\left(3+3^2+3^3+....+3^{30}\right)\)

\(\Rightarrow2B=3^{31}-3\)

\(\Rightarrow B=\frac{3^{31}-3}{2}\)

b) \(B=3+3^2+3^3+3^4+...+3^{30}\)

         \(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{29}+3^{30}\right)\)

           \(=3.\left(1+3\right)+3^3.\left(1+3\right)+....+3^{29}.\left(1+3\right)\)

             \(=4.\left(3+3^3+.....+3^{29}\right)⋮4\)

Vậy B chia hết cho 4

19 tháng 11 2014

=3+3^2+3^3+....+3^99+3^100

=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

=(1+3).3+(1+3).3^3.(1+3).3^5...(1+3).2^99

=4.3+4.3^3+4.3^5...4.2^99

Vậy,3+3^2+3^3+...+3^99+3^100 chia hết cho 4

19 tháng 11 2014

=3+3^2+3^3+....+3^99+3^100

=(3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)

=(1+3).3+(1+3).3^3. (1+3).3^5...(1+3).2^99

=4 . 3 + 4 . 3^3 + 4 . 3^5...4.2^99

Vậy:3 + 3^2 + 3^3 +...+ 3^99 +3^100 chia hết cho 4

30 tháng 6 2016

S = (1 + 3) + (32+33)+.....+(398+399)

  = 4 + 32 .(1 + 3) + .....+398.(1+3)

 = 1 .4 + 32.4 + ..... +398.4

= 4.(1 + 32 + .... +398) chia hết cho 4

30 tháng 6 2016

B = (1 + 3) + (32+33)+.....+(389+390)

  = 4 + 32 .(1 + 3) + .....+390.(1+3)

 = 1 .4 + 32.4 + ..... +390.4

= 4.(1 + 32 + .... +390) chia hết cho 4

24 tháng 3 2017

tổng s có 100 số hạng, nhóm thành 25 nhóm mỗi nhóm có 4 số hạng, có tổng chia hết cho 20

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

10 tháng 8 2020

Bạn vào câu hỏi tương tự là có nha !

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

10 tháng 8 2020

Ko cs đầy đủ bn ơi!

9 tháng 12 2017

1+3+3^2+...+3^99\(⋮\)40

(1+3+3^2+3^3)+...+(3^96+3^97+3^98+3^99)

1x(1+3+3^2+3^3)+...+3^96x(1+3+3^2+3^3)

1x40+...+3^96x40

=40x(1+...+3^96)\(⋮\)40

Vậy 1+3+3^2+...+3^99\(⋮\)40

9 tháng 12 2017

Ta có : 3C = 3 + 3^2 + 3^3 + ...3^12 
=> 3C - C = (3 + 3^2 + 3^3 + ...3^12) - (1+3+3^2+3^3+....+3^11) = 3^12 - 1 = 531440 
hay 2C = 531440 => C = 265720 =40*6643