Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9+92+93+...+9100
=9.(1+9)+93(1+9)+...+999(1+9)
=10.(9+93+95+...+999)
->9+92+93+...+9100 chia hết cho 10
a) Ta có:
10^n + 8
= 1000..0 + 8 ( n số 0)
= 100...08 ( n - 1 số 0 )
Tổng các chữ số là: 1 + 0 + .. + 0 + 8 = 9 chia hết cho 9
=>100..00 8 chia hết cho 9
=> 10^n +8 chia hết cho 9
b) \(1531\) và \(2001\) là số lẻ nên tổng của chúng là số chẵn hay tổng của chúng chia hết cho \(2\).
c) Ta có: 10n+53=10.........0+125=100.....0125
\(\Rightarrow\) tổng các chữ số là: 1+0+...+0+1+2+5=9
Vì tổng các chữ số của 10n+53 \(⋮\) 3 và 9 ( \(9⋮\)3 và 9) nên 10n+53 chia hết cho 3 và 9.
+ Vì 14, 12, 10 đều là chẵn nên 14n, 12n, 10n đều là chẵn. \(\Rightarrow\) 14n + 12n + 10n là chẵn
+ Vì 11, 9, 7 đều là lẻ nên 11n, 9n, 7n đều là lẻ. \(\Rightarrow\) 11n + 9n + 7n là lẻ
Chẵn - Lẻ = Lẻ. Vậy, (14n + 12n + 10n) - (11n + 9n + 7n) là lẻ. \(\Rightarrow\) (14n + 12n + 10n) - (11n + 9n + 7n) \(⋮̸\) 2
\(\Rightarrow\) ĐPCM
\(9+9^2+9^3+...+9^{100}=\left(9+9^2\right)+\left(9^3+9^4\right)+...+\left(9^{99}+9^{100}\right)\)
\(=100+9^3.100+...+9^{99}.100\)
\(=100.\left(1+9^3+9^5+...+9^{99}\right)\) chia hết cho 100.
Do đó cũng chia hết cho 10.
Lời giải;
$9^9+9^{10}+9^{11}+9^{12}=9^9(1+9+9^2+9^3)$
$=9^9.820$ không chia hết cho 100 bạn nhé. Bạn xem lại đề.