K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 \(1+3+3^2+3^3+...+3^{99}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(=40+(3^4.40)+...+\left(3^{96}.40\right)\)

\(=40.\left(1+3^4+...+3^{96}\right)⋮40\left(\text{đ}pcm\right)\)

\(\Rightarrow1+3+3^2+3^3+...+3^{99}⋮40\)

24 tháng 4 2019

em thường nhảy nhót trên cây mất dấu ở chín tầng mây mất rồi

là 2 từ gì

24 tháng 4 2019

đặt tổng cần tìm là A

=>A = 1+3+3^2+3^3+...+3^99 
A = (1+3^1+3^2+3^3) + (3^5+3^6+3^7+3^8) + ... + (3^96+3^97+3^98+3^99) 
A=(1+3^1+3^2+3^3) + 3^5(1+3^1+3^2+3^3) + ...+3^96(1+3^1+3^2+3^3) 
Mà 1+3^1+3^2+3^3 = 40 
Nên A= 40 + 3^5.40 +... + 3^96.40 
Vì mỗi số hạng của A đều chia hết cho 40 nên A chia hết cho 40

17 tháng 2 2020

Cần mình giúp bạn không?

17 tháng 2 2020

Vũ Duy Quang

II. Cách nhận biết câu trả lời đúng

Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:

1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)

2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)

3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.

4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.

5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)

6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.

Ta có:

M=\(1+3+3^2+3^3+3^4+...+3^{99}+3^{100}\)

\(\Rightarrow M=1+3\left(1+3+3^2+3^3\right)+.....+3^{97}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow M=1+3.40+....+3^{97}.40\)

Mà ta có:\(3.40+....+3^{97}.40\)⋮40; 1 chia cho 40 dư 1 nên M chia cho 40 dư 1

Vậy M chia cho 40 dư 1

17 tháng 2 2020

=1+(31+2+...+100)

=1+(3100+1.(100-1):1+1)

=1+(3101.100)

=1+310100

Cuối cùng bạn tự giải nhé

Chúc bạn học tốt

16 tháng 7 2016

S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1

=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1

=1-1/N+1

->S<1

NHA!

16 tháng 7 2016

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\)

=>\(S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

=>\(S=1-\frac{1}{n+3}< 1\)

Vậy S<1 (đpcm)

4 tháng 11 2018

A=(1+3+32)+...+(329+330+331)

A=13+33.(1+3+32)+...+329.(1+3+32)

A=13+33.13+...+329.13

A=13.(1+33+...+339)

\(\Rightarrow\)A\(⋮\)13

Vậy A\(⋮\)13 (ĐPCM)

4 tháng 11 2018

\(A=1+3+3^2+3^3+...+3^{31}\)

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{29}+3^{30}+3^{31}\right)\)

\(A=1.\left(1+3+9\right)+3^3\left(1+3+9\right)+...+3^{29}.\left(1+3+9\right)\)

\(A=1.13+3^3.13+...+3^{29}.13⋮13\)

(vì mỗi số hạng đều chia hết cho 13)

7 tháng 8 2019

\(B=1^2+2^2+\cdot\cdot\cdot+100^2\)

\(\Rightarrow B=1\cdot\left(2-1\right)+2\cdot\left(3-1\right)+\cdot\cdot\cdot+100\cdot\left(101-1\right)\)

\(\Rightarrow B=\left(1\cdot2+2\cdot3+\cdot\cdot\cdot+100\cdot101\right)-\left(1+2+\cdot\cdot\cdot+100\right)\)

Đặt A = 1.2 + 2.3 + ... + 100.101

\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+\cdot\cdot\cdot+100\cdot101\cdot3\)

\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+\cdot\cdot\cdot+100\cdot101\cdot\left(102-99\right)\)

\(\Rightarrow3A=\left(1\cdot2\cdot3+\cdot\cdot\cdot+100\cdot101\cdot102\right)-\left(1\cdot2\cdot3+\cdot\cdot\cdot+99\cdot100\cdot101\right)\)

\(\Rightarrow3A=100\cdot101\cdot102\)

\(\Rightarrow A=100\cdot101\cdot34\)

\(\Rightarrow A=343400\)

\(\Rightarrow B=A-\left(1+2+\cdot\cdot\cdot+100\right)\)

\(\Rightarrow B=343400-\frac{101\cdot100}{2}\)

\(\Rightarrow B=343400-101\cdot50\)

\(\Rightarrow B=343400-5050\)

\(\Rightarrow B=338350\)

7 tháng 8 2019

\(A=3+3^2+3^3+...+3^{100}+3^{101}\)

\(3A=3^2+3^3+3^4+...+3^{101}+3^{102}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{101}+3^{102}\right)-\left(3+3^2+3^3+...+3^{100}+3^{101}\right)\)

\(2A=3^{102}-3\)

\(A=\frac{3^{102}-3}{2}\)

Tớ chỉ làm được câu A thôi, bạn thông cảm. Với lại tớ không chắc đúng đâu.

=))

10 tháng 11 2016

5+5^2+..+5^98=

(5+5^2+5^3+5^4+5^5+5^6)+..+(5^93+5^94+5^95+5^96+5^97+8^98)chia het cho 126

mấy bài còn lại cung tương tự 

kmình nhé

10 tháng 11 2016

Mình đã giải đc rồi!!!