K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

\(B=1^2+2^2+\cdot\cdot\cdot+100^2\)

\(\Rightarrow B=1\cdot\left(2-1\right)+2\cdot\left(3-1\right)+\cdot\cdot\cdot+100\cdot\left(101-1\right)\)

\(\Rightarrow B=\left(1\cdot2+2\cdot3+\cdot\cdot\cdot+100\cdot101\right)-\left(1+2+\cdot\cdot\cdot+100\right)\)

Đặt A = 1.2 + 2.3 + ... + 100.101

\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+\cdot\cdot\cdot+100\cdot101\cdot3\)

\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+\cdot\cdot\cdot+100\cdot101\cdot\left(102-99\right)\)

\(\Rightarrow3A=\left(1\cdot2\cdot3+\cdot\cdot\cdot+100\cdot101\cdot102\right)-\left(1\cdot2\cdot3+\cdot\cdot\cdot+99\cdot100\cdot101\right)\)

\(\Rightarrow3A=100\cdot101\cdot102\)

\(\Rightarrow A=100\cdot101\cdot34\)

\(\Rightarrow A=343400\)

\(\Rightarrow B=A-\left(1+2+\cdot\cdot\cdot+100\right)\)

\(\Rightarrow B=343400-\frac{101\cdot100}{2}\)

\(\Rightarrow B=343400-101\cdot50\)

\(\Rightarrow B=343400-5050\)

\(\Rightarrow B=338350\)

7 tháng 8 2019

\(A=3+3^2+3^3+...+3^{100}+3^{101}\)

\(3A=3^2+3^3+3^4+...+3^{101}+3^{102}\)

\(3A-A=\left(3^2+3^3+3^4+...+3^{101}+3^{102}\right)-\left(3+3^2+3^3+...+3^{100}+3^{101}\right)\)

\(2A=3^{102}-3\)

\(A=\frac{3^{102}-3}{2}\)

Tớ chỉ làm được câu A thôi, bạn thông cảm. Với lại tớ không chắc đúng đâu.

=))

30 tháng 7 2017

A = 1 + 3 + 32 + 33 + ... + 3100 

2A = 3 + 32 + 33 + 34 + ... + 3101 

A = 2A - A = 3101 - 1

Vậy A = 3101 - 1

22 tháng 8 2017

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\left(101+1\right).100:2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)

\(=\frac{5050}{1+1+...+1+1}\)(51 chữ số 1)

\(\frac{5050}{51}\)

6 tháng 12 2020

b, \(3737.43-4343.37=\left(37.101\right).43-\left(43.101\right).37=0\)

suy ra B = 0

c, \(D=\frac{2^{12}\left(13+65\right)}{2^{10}.104}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.16}{3^9.2^4}\)

\(=\frac{2^{12}.2.39}{2^{10}.2^3.13}+\frac{3^{10}.2^4}{3^9.2^4}=\frac{39}{13}+3=6\)

8 tháng 12 2020
Cảm ơn bn nhiều nha
22 tháng 7 2016

\(A=\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(A=\frac{\left(\frac{101-1}{1}+1\right)\left(\frac{101+1}{2}\right)}{\left(\frac{101-1}{2}+1\right)\left(\frac{101+1}{2}\right)-\left(\frac{100-2}{2}+1\right)\left(\frac{100+2}{2}\right)}=\frac{101.51}{51.51-50.51}\frac{101.51}{51}=101\)

22 tháng 7 2016

còn b đâu

5 tháng 1 2018

a)

Chia ra từng nhóm, mỗi nhóm gồm 4 số, 2 dấu + và 2 dấu - liên tiếp nhau. 
(+1+2-3-4)=-4 
(+5+6-7-8)=-4 
(+9+10-11-12)=-4 
... 
(+97+98-99-100)=-4 
Vậy cho tới số 100, chia được số nhóm là: 
100:4=25 nhóm như vậy, 
Suy ra, tổng từ +1 đến -100 là: 
25.(-4)=-100 
Phần còn lại bạn ghi không rỏ nên không biết cộng đến số bao nhiêu? 

Theo như trên, thì 
S=(-100)+101+102=103 

Đáp số: 
S=103

b)

Ta thấy : 3 - 1= 2 
5 - 3 = 2 
7 - 5 = 2 
...... 
99 - 97=2. Như vậy đây là dãy số cách đều, mỗi số hạng cách số liền kề hai đơn vị . Số số hạng là:( 99 - 1 ) : 2 + 1 = 50 ( số hạng). 
Ta sắp xếp thành các cặp số ta có số cặp số là: 
50:2=25( cặp số ) 
A=( 1 - 3 )+ ( 5 - 7) + ( 9 - 11) + .....+ ( 97 - 99) +101
= (- 2) + (- 2 )+ (- 2 )+ ....+ (- 2 )+ 101
= - 2 x 2 5 +101

= - 50+101

= 51