K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NG
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 6 2019
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
NN
0
12 tháng 2 2016
Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};..............;\frac{1}{100^2}<\frac{1}{99.100}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+............+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{99.100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}<1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}<1\)
ta có
M= 1+1/2^2+1/3^2+...+1/50^2
vì 1=1
1/2^2<1/1*2
1/3^2<1/2*3
.....
1/50^2<1/49*50
=> M< 1+1/1*2+1/2*3+...1/49*50
=> M< (1/1*1+1/1*2+1/2*3+...+1/49 *50)
=> M<( 1/1-1/1+1/1-1/2+...+1/49-1/50)
=> M< (1-1/50)
=> M< 49/50
ta có 49/50= 98/100 và 98/100<173/100=> M<173/100