K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Ta có đpcm

18 tháng 3 2018

Bạn Trí làm sai rồi!

Đề bài không yêu cầu chứng minh như bạn

2 tháng 5 2018

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{200^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1-\frac{1}{200}\)

\(=\frac{199}{200}\)

vậy \(\frac{99}{200}< \frac{199}{200}< 1\left(đpcm\right)\)

2 tháng 5 2018

rồi sao

22 tháng 3 2019

Mk cần trước 23 h nha. Ai nhanh mk cho 3 k

22 tháng 3 2019

Trên máy mk hiển thị , câu hỏi này 4 phút nữa mới chính thức xuất hiện ,,, máy bị j hay do câu hỏi ak ??

12 tháng 2 2016

Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};..............;\frac{1}{100^2}<\frac{1}{99.100}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+............+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{99.100}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{99.100}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}<1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}<1\)

12 tháng 2 2016

bai toan nay kho

27 tháng 4 2018

Gọi tổng trên là A

=>A>\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\) =\(\frac{1}{2}-\frac{1}{101}=\frac{99}{202}>\frac{99}{200}\)(đpcm)

27 tháng 4 2018

\(\frac{99}{202}< \frac{99}{200}\)xem lại 

15 tháng 5 2016

Đặt A=1/3^2+1/4^2+1/5^2+...+1/200^2

       A<1/3^2+1/3*4+1/4*5+...+1/199*200

       A<1/9+1/3-1/4+1/4-1/5+...+1/199-1/200

      A<1/9+1/3-1/200

     A<4/9-1/200<4/9

=> A<4/9

=>1/3^2+1/4^2+...+1/200^2<4/9

15 tháng 5 2016

\(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{200^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{200.201}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{200}-\frac{1}{201}\)

=\(\frac{1}{3}-\frac{1}{201}=\frac{22}{67}< \frac{4}{9}\)

Vậy: \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{200^2}< \frac{4}{9}\)