K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

1 tháng 8 2018

1) \(a^4-3a^3-6a^3+18a^2-18a^2+54a+27a-81\)

\(=a^3\left(a-3\right)-6a^2\left(a-3\right)-18a\left(a-3\right)+27\left(a-3\right)\)

\(=\left(a-3\right)\left(a^3-6a^2-18a+27\right)\)

\(=\left(a-3\right)\left(a^3+3a^2-9a^2-27a+9a+27\right)\)

\(=\left(a-3\right)\left[a^2\left(a+3\right)-9a\left(a+3\right)+9\left(a+3\right)\right]\)

\(=\left(a-3\right)\left(a+3\right)\left(a^2-9a+9\right)\)

2) Ta có:

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x\left(x+y+z\right)+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)

\(=\left(y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz+x^2+xy+xz+x^2\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)

\(=\left(y+z\right)\left(3x^2+3xy+3xz+2yz+y^2+z^2\right)-\left(y+z\right)\left(y^2-yz+z^2\right)\)

\(=\left(y+z\right)\left(3x^2+3xy+3xz+2yz+y^2+z^2-y^2+yz-z^2\right)\)

\(=\left(y+z\right)\left(3x^2+3xy+3xz+3yz\right)\)

\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

\(\left(x+y+z\right)^3-x^3-y^3-z^3\\ =x^3+y^3+z^3-x^3-y^3-z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\\ =3\left(x+y\right)\left(y+z\right)\left(z+x\right)\:\left(đpcm\right)\)

7 tháng 7 2017

\(VT=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3z\left(x+y\right)^2+3\left(x+y\right)z^2+z^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3xy^2+y^3+3z+\left(x+y\right)^2+3xz^2+3yz^2-x^3-y^3\)

\(=3x^2y+3xy^2+3z\left(x^2+2xy+y^2\right)+3xz^2+3yz^2\)

\(=3x^2y+3xy^2+3x^2z+6xyz+3y^2z+3xz^2+3yz^2\) (1)

\(VP=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(=\left(3x+3y\right)\left(y+z\right)\left(z+x\right)\)

\(=\left(3xy+3xz+3y^2+3yz\right)\left(z+x\right)\)

\(=3xyz+3x^2y+3xz^2+3x^2z+3y^2z+3xy^2+3yz^2+3xyz\)

\(=6xyz+3x^2y+3xz^2+3x^2z+3y^2z+3xy^2+3yz^2\) (2)

Từ (1) và (2) suy ra \(VT=VP\) (đpcm)

6 tháng 7 2016

\(\left(x+y+z\right)^3=\left[\left(x+y\right)+z\right]^3=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+c^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\Rightarrow\left(dpcm\right)\)

Chúc bạn học tốt 

T I C K nha cảm ơn bạn

20 tháng 6 2015

x^3 + y^3 + z^3 +3(x+y)(y+z)(z+x)=x3+y3+z3+(3x+3y)(y+z)(z+x)

=x3+y3+z3+(3xy+3xz+3y2+3yz)(z+x)

=x3+y3+z3+3xyz+3x2y+3xz2+3x2z+3y2z+3y2x+3yz2+3xyz

=x3+y3+z3+3x2y+3xz2+3x2z+3y2z+3y2x+3yz2+6xyz

=x3+3x2y+3y2x+y3+3x2z+6xyz+3y2z+3xz2+3yz2+z3

=(x+y)3+3z(x2+2xy+y2)+3z2(x+y)+z3

=(x+y)3+3z(x+y)2+3z2(x+y)+z3

=(x+y+z)3

vậy (x+y+z)^3= x^3 + y^3 + z^3 +3(x+y)(y+z)(z+x)

\(VT=\left(x+y+z\right)^3=\left[\left(x+y\right)+z\right]^3\)

\(=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

\(=VP\left(đpcm\right)\)

\(\left(x+y+z\right)^3=x^3+y^3+z^3+3x^2y+3xy^2+3y^2z+3z^2x+3x^2z+3z^2x+6xyz\)

=\(x^3+y^3+z^3+3\left(x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz\right)\)

=\(x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)(đpcm)

29 tháng 7 2019

#)Giải :

\(\left(x+y+z\right)^3-x^3y^3z^3=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Leftrightarrow\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Ta có : \(\left(x+y+z\right)^3=\left[\left(x+y\right)+z\right]^3=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+yz+zx+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Rightarrow\left(x+y+z\right)^3=x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(\Rightarrow\left(x+y+z\right)^3-x^3-y^3-z^3=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(đpcm\right)\)