K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2015

x^3 + y^3 + z^3 +3(x+y)(y+z)(z+x)=x3+y3+z3+(3x+3y)(y+z)(z+x)

=x3+y3+z3+(3xy+3xz+3y2+3yz)(z+x)

=x3+y3+z3+3xyz+3x2y+3xz2+3x2z+3y2z+3y2x+3yz2+3xyz

=x3+y3+z3+3x2y+3xz2+3x2z+3y2z+3y2x+3yz2+6xyz

=x3+3x2y+3y2x+y3+3x2z+6xyz+3y2z+3xz2+3yz2+z3

=(x+y)3+3z(x2+2xy+y2)+3z2(x+y)+z3

=(x+y)3+3z(x+y)2+3z2(x+y)+z3

=(x+y+z)3

vậy (x+y+z)^3= x^3 + y^3 + z^3 +3(x+y)(y+z)(z+x)

\(VT=\left(x+y+z\right)^3=\left[\left(x+y\right)+z\right]^3\)

\(=\left(x+y\right)^3+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3\left(x+y\right)z\left(x+y+z\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

\(=VP\left(đpcm\right)\)

\(\left(x+y+z\right)^3=x^3+y^3+z^3+3x^2y+3xy^2+3y^2z+3z^2x+3x^2z+3z^2x+6xyz\)

=\(x^3+y^3+z^3+3\left(x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz\right)\)

=\(x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)(đpcm)

18 tháng 11 2018

a)Đặt A=(x+y+z)3-x3-y3-z3
Xét (x+y+z)3=[(x+y)+z]3=(x+y)3+z3+3z(x+y)(x+y+z) =x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)
=(x3+y3+z3)+3(x+y)(xy+xz+yz+z2)
=(x3+y3+z3)+3(x+y)[(xy+yz)+(xz+z2)]
=(x3+y3+z3)+3(x+y)[y(x+z)+z(x+z)]
=(x3+y3+z3)+3(x+y)(x+z)(y+z)
Từ đó suy ra A=(x3+y3+z3)+3(x+y)(x+z)(y+z)-x3-y3-z3=3(x+y)(x+z)(y+z)

21 tháng 11 2018

Đề có đúng ko vậy (x+y+c)3 ???

22 tháng 11 2018

xin hỗi viết thiếu chỗ kia là -x3 -y3 -z3=....

29 tháng 12 2017

a, \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Leftrightarrow\left(x+y\right)^3=-z^3\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3=-z^3\)

\(\Leftrightarrow x^3+y^3+z^3=-3xy\left(x+y\right)\)

\(\Leftrightarrow x^3+y^3+z^3=3xyz\)(vì x+y=-z)

30 tháng 12 2017

Cảm ơn ạ

Đặt A=(x+y+z)3-x3-y3-z3

Xét (x+y+z)3=[(x+y)+z]3=(x+y)3+z3+3z(x+y)(x+y+z)=x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)

                                                                                      =(x3+y3+z3)+3(x+y)(xy+xz+yz+z2)

                                                                                       =(x3+y3+z3)+3(x+y)[(xy+yz)+(xz+z2)]

                                                                                        =(x3+y3+z3)+3(x+y)[y(x+z)+z(x+z)]

                                                                                         =(x3+y3+z3)+3(x+y)(x+z)(y+z)

Từ đó suy ra A=(x3+y3+z3)+3(x+y)(x+z)(y+z)-x3-y3-z3=3(x+y)(x+z)(y+z

3 tháng 10 2017

 thank you very much !

11 tháng 7 2016

1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)

3)  Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)

Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)

a) Ta có: \(VP=x^2+y^2+z^2-2xy+2yz-2zx\)

\(=\left(x^2-xy-xz\right)+\left(y^2-xy+yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x-y-z\right)+y\left(y-x+z\right)+z\left(z-y-x\right)\)

\(=x\left(x-y-z\right)-y\left(x-y-z\right)-z\left(x-y-z\right)\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=\left(x-y-z\right)^2=VT\)(đpcm)

b) Ta có: \(VP=x^2+y^2+z^2+2xy-2yz-2zx\)

\(=\left(x^2+xy-zx\right)+\left(y^2+xy-2yz\right)+\left(z^2-yz-zx\right)\)

\(=x\left(x+y-z\right)+y\left(x+y-z\right)+z\left(z-y-x\right)\)

\(=\left(x+y-z\right)\left(x+y\right)-z\left(x+y-z\right)\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=\left(x+y-z\right)^2=VT\)(đpcm)

c) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)=VT\)(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5=VP\)(đpcm)

24 tháng 5 2017

lười thế bạn nhân phá ra là được mà

24 tháng 5 2017

a ) \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Biến đổi vế trái ta được :

\(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)\)

\(=x^2+xy+xz+xy+y^2+yz+zx+zy+z^2\)

\(=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)

Vậy \(\left(x+y+z\right)^2=x^2+y^2+z^{2^{ }}+2xy+2yz+2zx\)