Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,2x2+8x+20=2(x2+4x)+20
=2(x2+4x+4)+20-4.2
=2(x+2)2+12
Ta có : 2(x+2)2 \(\ge0với\forall x\)
12 > 0
\(\Rightarrow\)2(x+2)2+12>0 với \(\forall x\)
\(\Rightarrow\)2x2+8x+20>0 với \(\forall\)x
b,x4-3x2+5
=(x4-3x2)+5
=(x4-2.\(\frac{3}{2}\)x2+\(\frac{9}{4}\))+5-\(\frac{9}{4}\)
=(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}\)
Có : (x2-3/2)2\(\ge0với\forall x\)
\(\frac{11}{4}\)>0
\(\Rightarrow\)(x2-\(\frac{3}{2}\))2+\(\frac{11}{4}>0với\forall x\)
Bài 2:
a: =>(4x-1)2=0
=>4x-1=0
hay x=1/4
b: =>(x+4)(x-2)=0
=>x=-4 hoặc x=2
c: =>x2+2x+1+y2+2y+1=0
\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2=0\)
=>x=-1và y=-1
1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)
3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0
4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)
5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)
1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)
=> Đpcm
2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)
Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)
=> Đpcm
3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)
\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)
\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)
=> Đpcm
4,5 làm tương tự
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
a) Ta có: x2 + 4x +5 = ( x2 + 4x + 4 ) +1 = (x+2)2 + 1 >= 1 >0 với mọi x
b) Ta có : 4x2 - 4x +2 = ( 4x2 - 4x +1 ) + 1 = (2x+1)2 > 0 với mọi x
c) Ta có : x2 - 3x +4 = [x2 - 2.(3/2)x + (9/4) ]+ (7/4) = ( x - 3/2 )2 + 7/4 >0 với mọi x
mấy câu sau lm tương tự: sử dụng hằng đẳng thức tách thành dạng một bình phương cộng vs 1 số
a) x2 + 4x + 5 = x2 + 2 . 2x + 22 + 1 = (x + 2)2 + 1\(\ge\)1 > 0
b) 4x2 - 4x + 2 = (2x)2 - 2 . 2x + 1 + 1 = (2x - 1)2 + 1\(\ge\)1 > 0
c) x2 - 3x + 4 = x2 - 2 . 1,5x + 1,52 + 1,75 = (x - 1,5)2 + 1,75 \(\ge\)1,75 > 0
d) x2 - x + 1 = x2 + 2 . 0,5x + 0,52 + 0,75 = (x + 0,5)2 + 0,75\(\ge\)0,75 > 0
e) x2 - 5x + 7 = x2 - 2 . 2,5x + 2,52 + 0,75 = (x - 2,5)2 + 0,75\(\ge\)0,75 > 0
a, \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1>0\)
=> đpcm
b, Đề sai
c, \(x^2+x+5=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)
=> đpcm
* Ta có: \(A\left(x\right)=x^2-4x+5=\left(x^2-2\cdot x\cdot2+2^2\right)-2^2+5=\left(x-2\right)^2+1\ge1>0\)
Vậy \(A\left(x\right)=x^2-4x+5>0\)
b. \(B\left(x\right)=x^2+x+1=\left[x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]-\left(\dfrac{1}{2}\right)^2+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Vậy \(B\left(x\right)=x^2+x+1>0\)
c. \(C\left(x\right)=8x-x^2-17=-x^2+8x-17=-\left(x^2-8x\right)-17=-\left(x^2-2\cdot x\cdot4+4^2\right)+4^2-17=-\left(x-4\right)^2-1\le-1< 0\)
Vậy \(C\left(x\right)=8x-x^2-17< 0\)