Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?
3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1
Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)
Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.
4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x
5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
vì \(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x
mik lm mẫu câu a nhé
a, \(=\left(a+1\right).\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)tích 3 stn liên tiếp chia hết cho 6
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
1/
a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm
b/ Đề sai , giả sử với a = 3
c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)
d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)
2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
BT đạt giá trị nhỏ nhất bằng 2 tại x = 3
b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
BT đạt giá trị lớn nhất bằng -2 tại x = 3
1) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Với \(a\in Z\)thì \(a\left(a+1\right)\left(a+2\right)\)là tích của 3 số nguyên liên tiếp nên\(⋮6\)
2)Với \(a\in Z\)Ta có:\(a\left(2a-3\right)-2a\left(a+1\right)=a\left(2a-3-2a-2\right)=-5a⋮5\)
3) Ta có:\(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1\)lớn hơn 0 với mọi x
4) Ta có: \(x^2-x+1=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)lớn hơn 0 với mọi x
a, n. (2n -3 ) -2n .(n + 1 ) chia hết cho 5
b, n. ( n + 5 ) - (n -3 ) . ( n + 2 ) chia hết cho 6
a)a2(a+1)+2a(a+1)=(a2+2a)(a+1)=a(a+2)(a+1)
Ta có Ta có a(a+1)(a+2) là 3 số tự nhiên liên tiếp =>a(a+1)(a+2)⋮3 (1)
Mà a(a+1)\(⋮\)2 (2)
Từ (1)(2) suy ra a(a+1)(a+2)⋮6
=>a2(a+1)+2a(a+1)⋮6
b)a(2a-3)-2a(a+1)=2a2-3a-2a2-2a=-5a
Vì -5 chia hết 5
=>-5a chia hết 5
c)x2+2x+2=x2+2x+1+1=(x+1)2+1
Vì (x+1)2≥0
<=>(x+1)2+1>0
d)x2-x+1=\(x^2-\frac{2.1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=\(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(đpcm)
e)-x2+4x-5=-(x2-4x+5)=-(x2-4x+4)-1=-(x-2)2-1
Vì -(x-2)2≤0=>-(x-2)2-1<0(đpcm)
rồi nhé
a) Ta có: \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\cdot\left(a^2+2a\right)\)
\(=a\cdot\left(a+1\right)\cdot\left(a+2\right)\)
Vì a và a+1 là hai số nguyên liên tiếp nên \(a\cdot\left(a+1\right)⋮2\)(1)
Vì a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮3\)(2)
mà 2 và 3 là hai số nguyên tố cùng nhau(3)
nên từ (1); (2) và (3) suy ra \(a\cdot\left(a+1\right)\cdot\left(a+2\right)⋮6\forall a\in Z\)
hay \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)(đpcm)
b) Ta có: \(a\left(2a-3\right)-2a\left(a+1\right)\)
\(=2a^2-3a-2a^2-2a\)
\(=-5a⋮5\forall a\in Z\)
hay \(a\left(2a-3\right)-2a\left(a+1\right)⋮5\forall a\in Z\)(đpcm)
c) Ta có: \(x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x+1\right)^2+1\ge1>0\forall x\in Z\)
hay \(x^2+2x+2>0\forall x\in Z\)(đpcm)
d) Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in Z\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\in Z\)
hay \(x^2-x+1>0\forall x\in Z\)(đpcm)
e) Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\in Z\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\in Z\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\in Z\)
hay \(-x^2+4x-5< 0\forall x\in Z\)