Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cô si với hai số không âm ta có :
\(1.\sqrt{a+1}\le\frac{a+1+1}{2}=\frac{a}{2}+1\)
\(1.\sqrt{b+1}\le\frac{b}{2}+1\)
\(1.\sqrt{c+1}\le\frac{c}{2}+1\)
=> \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le3+\frac{a+b+c}{2}=3+\frac{1}{2}=3,5\)
=> ĐPCM
Ta có \(\sqrt{1+a}\le\frac{a\:+1+1}{2}=\frac{a+2}{2}\)
Tương tự \(\sqrt{1+b}\le\frac{b+2}{2}\)
\(\sqrt{1+C}\le\frac{c+2}{2}\)
Từ đó ta có \(\sqrt{1+a}+\sqrt{1+b}+\sqrt{1+c}\)<= \(\frac{a+b+c+6}{2}=\frac{7}{2}\)= 3,5
Bạn alibaba nguyễn hình như đọc không kĩ đề thì phải, ở đây ng ta bảo chứng minh bé hơn đâu phải bé hơn hoặc bằng đâu mà bạn dừng lại ở đó không giải tiếp ? ĐOạn sau các bạn làm như này nhé :
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a+1=1\\b+1=1\\c+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}}\)(Vô lý)
vậy dấu "=" không xảy ra => \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)
<=> √a+1+√b+1+√c+1< √12.25
<=>a+1+b+1+c+1< 12.25
<=>4<12.25(dpcm)
hay √2 <3.5
Áp dụng BĐT Bunyakovsky, ta có:
\(\left(a+1+b+1+c+1\right)3\ge\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\)
\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\sqrt{12}< 3,5\)
Áp dụng BĐT Cauchy ta được: \(2\left(\sqrt{ab}-b\right)=2\left(\sqrt{b\left(b+1\right)}-b\right)< 2\left(\frac{2b+1}{2}-b\right)=1\)
\(\Leftrightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)
không xảy ra dấu bằng
Vế còn lại:
CHú ý: b+1=c+2 mà c>0 => b-1>0
\(2\left(b-\sqrt{bc}\right)=2\left(b-\sqrt{b\left(b-1\right)}\right)>2\left(b-\frac{2b-1}{2}\right)=1\)
\(\Leftrightarrow\frac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
=> ĐPCM
Ta c/m 1) \(c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a,b>0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
2) \(a,b>0\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Thật vậy ĐK: a+c>0, b+c>0 mà c<0 \(\Rightarrow a,b>0\)
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)
\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow\hept{\begin{cases}c< 0\\c^2=ab+ac+bc+c^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}c< 0\\ab+bc+ca=0\end{cases}\Rightarrow\hept{\begin{cases}c< 0\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}}\)
\(\Rightarrow\)đpcm
2) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\)mà \(a,b>0\Rightarrow c< 0\)
\(\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\Rightarrow c=\frac{-ab}{a+b}\)
\(\Rightarrow\hept{\begin{cases}a+c=a-\frac{ab}{a+b}=\frac{a^2}{a+b}\\b+c=b-\frac{ab}{a+b}=\frac{b^2}{a+b}\end{cases}}\)
\(\Rightarrow\sqrt{a+c}+\sqrt{b+c}=\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{a+b}}=\frac{a+b}{\sqrt{a+b}}=\sqrt{a+b}\)
\(\Rightarrow\)Đpcm
xin chào nha mk ko bt đâu ok