Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
Tương tự từ tỷ lệ thức ban đầu \(\frac{a}{b}=\frac{c}{d}\)cũng suy ra: \(\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\Leftrightarrow cd.\left(a^2+b^2\right)=ab.\left(c^2+d^2\right)\)
\(\Leftrightarrow cda^2+cdb^2=abc^2+abd^2\)
\(\Leftrightarrow cdb^2-abc^2=abd^2-cda^2\)
\(\Leftrightarrow cb.\left(db-ac\right)=ad.\left(bd-ca\right)\Leftrightarrow cb=ad\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)(ĐK: bd-ac khác 0)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2};\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=\frac{c^2}{d^2}\\ \Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
(Mik nghĩ zậy thui chứ ko chắc có trình bày đúng hay ko)
_Hok tốt_
!!!
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Ta có:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a^2+b^2+a.b}{c^2+d^2+c.d}=\frac{a^2+a.b+b^2+a.b}{c^2+c.d+d^2+c.d}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}=\frac{a\left(a+b\right)+b\left(a+b\right)}{c\left(c+d\right)+d\left(c+d\right)}=\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}\)
\(\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{a.b}{c.d}\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}\)
\(\Rightarrow\frac{ca+cb}{ca+ad}=\frac{bc+bd}{ad+bd}=\frac{ca+bd}{ca-bd}=1\)
\(\Rightarrow ca+cb=ca+ad\)
\(\Rightarrow cb=ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
Giả sử tất cả các tỷ lệ thức đều có nghĩa.
Từ: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Và suy ra: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
Và Từ: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
Đề sai: đ \(\ne\)d => ko thể chứng minh
ban coi trong sach giao khoa ti le thuc se co mot phan chung minh cho ban thay bang cach dat a/b=c/d=k nha