\(\frac{n+1}{3\times n+4}\)là phân số tối giản.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2015

Gọi d là ƯCLN(n+1;3n+4)

=>n+1 chia hết ho d=>3n+3 chia hết cho d

3n+4 chi hết cho d

=>3n+4-3n-3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(n+1;3n+4)=1

=>p/s trên tối giản

19 tháng 4 2020

a)Gọi ƯCLN(n + 1 ; 2n + 3) = d

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)

=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản

b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d

\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)

=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau

\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản

4 tháng 2 2022

hahaa

23 tháng 2 2016

Gọi UCLN(3 x n;3 x n+1)=d

Ta có 3 x n chia hết cho d

      3 x n+1 chia hết cho d

=>(3 x n+1)-(3 x n) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số trên tối giản

23 tháng 2 2016

Gọi d là ƯC ( 3n ; 3n + 1 )

=> 3n ⋮ d

=> 3n + 1 ⋮ d

=> [ ( 3n + 1 ) - 3n ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯC ( 3n ; 3n + 1 ) = 1 nên 3n/3n+1 là p/s tối giản ( đpcm )

6 tháng 1 2022

Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.

14 tháng 5 2017

a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]

b) Gọi d là ước chung lớn nhất của 3n và 3n+1

=> 3n \(⋮\)

Và: 3n+1 \(⋮\)d

=> (3n+1)-3n \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\)Ư(1)

=> d \(\in\){ 1}

Vậy \(\frac{3n}{3n+1}\)là phân số tối giản

Duyệt đi, chúc bạn học giỏi!

8 tháng 6 2017

\(\frac{3n}{3n+1}\)

20 tháng 1 2020

Gọi d là UCLN của cả tử và mẫu

Có: \(\hept{\begin{cases}18n+3⋮d\\21n+7⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}7\left(18n+3\right)⋮d\\6\left(21n+7\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(126n+21\right)⋮d\\\left(126n+42\right)⋮d\end{cases}}\)

\(\Rightarrow\left(126n+42\right)-\left(126n+21\right)⋮d\)

\(\Rightarrow21⋮d\)

\(\Rightarrow d\in\left\{3;7\right\}\)

Xét: \(d=3\Rightarrow\left(21n+7\right)⋮3\left(loại\right)\)

Xét :\(d=7\Rightarrow\left(36n+6\right)⋮7\Rightarrow\left(35n+n+6\right)⋮7\)

\(\Rightarrow\left(n+6\right)⋮7\Rightarrow n-1=7k\Rightarrow n=7k+1\)

Vậy: Để \(\frac{18n+3}{21n+7}\) tối giản \(\Leftrightarrow n\ne7k+1\)

22 tháng 2 2018

b) \(\frac{121212}{424242}=\frac{121212:60606}{424242:60606}=\frac{2}{7}\)

c) \(\frac{3.7.13.37.39-10101}{505050+707070}\)

\(=\frac{393939-10101}{1212120}\)

\(=\frac{383838}{1212120}\)

\(=\frac{19}{60}\)

26 tháng 4 2020

ai biêt

2 tháng 7 2018

Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )

=> n3 + 2n \(⋮\)d  ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )

Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )

Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d

=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d

=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d

=> n2 + 1 \(⋮\)d ( * )

=> n2 . ( n+ 1 ) \(⋮\)d

=> n4 + n2 \(⋮\)d ( 4 )

Từ ( 3 ) và ( 4 ) => ( n+ 2n2 ) - ( n4 + 2n ) \(⋮\)d

=> n2 \(⋮\)d ( 5 )

Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

Vậy : phân số đã cho tối giản