Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi ƯCLN(n + 1 ; 2n + 3) = d
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Rightarrow}\left(2n+3\right)-\left(2n+2\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> n + 1 ; 2n + 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản
b) Gọi ƯCLN(8n + 5 ; 6n + 4) = d
\(\Rightarrow\hept{\begin{cases}8n+5⋮d\\6n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(8n+5\right)⋮d\\4\left(6n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+15⋮d\\24n+16⋮d\end{cases}\Rightarrow}\left(24n+16\right)-\left(24n+15\right)⋮d}\)
\(\Rightarrow\)\(1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)\Rightarrow d\in\left\{\pm1\right\}\)
=> 8n + 5 ; 6n + 4 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{8n+5}{6n+4}\)là phân số tối giản
Gọi UCLN(3 x n;3 x n+1)=d
Ta có 3 x n chia hết cho d
3 x n+1 chia hết cho d
=>(3 x n+1)-(3 x n) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số trên tối giản
Gọi d là ƯC ( 3n ; 3n + 1 )
=> 3n ⋮ d
=> 3n + 1 ⋮ d
=> [ ( 3n + 1 ) - 3n ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 3n ; 3n + 1 ) = 1 nên 3n/3n+1 là p/s tối giản ( đpcm )
Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.
a) Hướng dẫn: Đầu tiên chỉ cần phân tích ước của 74. Vậy để \(\frac{a}{74}\)tối giản thì a \(\ne\)Ư(74) hay a \(\ne\)B[(Ư)74]
b) Gọi d là ước chung lớn nhất của 3n và 3n+1
=> 3n \(⋮\)d
Và: 3n+1 \(⋮\)d
=> (3n+1)-3n \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d \(\in\){ 1}
Vậy \(\frac{3n}{3n+1}\)là phân số tối giản
Duyệt đi, chúc bạn học giỏi!
Gọi d là UCLN của cả tử và mẫu
Có: \(\hept{\begin{cases}18n+3⋮d\\21n+7⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}7\left(18n+3\right)⋮d\\6\left(21n+7\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(126n+21\right)⋮d\\\left(126n+42\right)⋮d\end{cases}}\)
\(\Rightarrow\left(126n+42\right)-\left(126n+21\right)⋮d\)
\(\Rightarrow21⋮d\)
\(\Rightarrow d\in\left\{3;7\right\}\)
Xét: \(d=3\Rightarrow\left(21n+7\right)⋮3\left(loại\right)\)
Xét :\(d=7\Rightarrow\left(36n+6\right)⋮7\Rightarrow\left(35n+n+6\right)⋮7\)
\(\Rightarrow\left(n+6\right)⋮7\Rightarrow n-1=7k\Rightarrow n=7k+1\)
Vậy: Để \(\frac{18n+3}{21n+7}\) tối giản \(\Leftrightarrow n\ne7k+1\)
Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )
=> n3 + 2n \(⋮\)d ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )
Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )
Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d
=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d
=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d
=> n2 + 1 \(⋮\)d ( * )
=> n2 . ( n2 + 1 ) \(⋮\)d
=> n4 + n2 \(⋮\)d ( 4 )
Từ ( 3 ) và ( 4 ) => ( n4 + 2n2 ) - ( n4 + 2n ) \(⋮\)d
=> n2 \(⋮\)d ( 5 )
Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy : phân số đã cho tối giản
Gọi d là ƯCLN(n+1;3n+4)
=>n+1 chia hết ho d=>3n+3 chia hết cho d
3n+4 chi hết cho d
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n+1;3n+4)=1
=>p/s trên tối giản