Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi đề sai ở chỗ dấu " , " phải không?? bạn hãy sửa đề đi
Bạn Nguyễn Thị Bích Phương ơi, mình sửa lại đề rồi đó. Bạn giải giúp mình với.
2.Có A=1/5+1/6+1/7+...+1/17
=(1/5+1/6+1/7+...+1/10)+(1/11+1/12+1/13+..+1/17)
Tới đây bạn tự tìm xem nó có bao nhiêu phân số
A<1/5.6+1/11.7=6/5+7/11=101/55=\(1\frac{46}{55}\)<2
VẬy A<2
1.Có A = tự viết ra
=(1/5+1/6+..+1/10)+(1/11+1/12+..+1/17)
Có bao nhiêu nhiêu ps tự tìm nhớ
A>1/10 .6+1/17 .7=Tự làm các bước =86/85>1
Vậy A>1
a,1/51 > 1/100
1/52 > 1/100
1/53 > 1/100
...
1/100=1/100
=>H>1/100 + 1/100 + 1/100 +...+1/100
H>50/100=1/2
1/51<1/50
1/52<1/50
....
1/100<1/50
=>H<1/50+1/50+...+1/50
H<50/50=1
Vay1/2<H<1
Ta có : \(R=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{39}\)
= \(\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\right)+\left(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}\right)\)
10 hạng tử 10 hạng tử
\(>\left(\frac{1}{29}+\frac{1}{29}+...+\frac{1}{29}\right)+\left(\frac{1}{39}+\frac{1}{39}+...+\frac{1}{39}\right)\)
10 hạng tử 1/29 10 hạng tử 1/39
\(=\frac{10}{29}+\frac{10}{39}>\frac{10}{30}+\frac{10}{40}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\Rightarrow R>\frac{7}{12}\left(1\right)\)
Lại có : \(R=\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}\right)+\left(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}\right)\)
10 số hạng 10 số hạng
\(>\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)=\frac{10}{20}+\frac{10}{30}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
=> \(R>\frac{5}{6}\left(2\right)\)
Từ (1) và (2) => \(\frac{7}{12}< R< \frac{5}{6}\left(\text{ĐPCM}\right)\)
\(A=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+...+\frac{1}{20}\)
\(=\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\frac{1}{12}+\left(\frac{1}{13}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+...+\frac{1}{20}\right)\)
\(>\left(\frac{1}{9}+\frac{1}{9}+\frac{1}{9}\right)+\left(\frac{1}{12}+\frac{1}{12}+\frac{1}{12}\right)+\frac{1}{12}+\left(\frac{1}{16}+...+\frac{1}{16}\right)+\left(\frac{1}{24}+...+\frac{1}{24}\right)\)
\(=\frac{1}{3}+\frac{1}{4}+\frac{1}{12}+\frac{1}{4}+\frac{1}{6}=1+\frac{1}{12}\)
\(B=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{18}+\frac{1}{19}\)
\(=\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{14}\right)+\left(\frac{1}{15}+...+\frac{1}{19}\right)\)
\(< \left(\frac{1}{5}+...+\frac{1}{5}\right)+\left(\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{15}+...+\frac{1}{15}\right)\)
\(=\frac{5}{5}+\frac{5}{10}+\frac{5}{15}=1+\frac{5}{6}\)