Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, ab + ba = (a*10 + b) + (b*10 + a)
= a*(10+1) + b*(1+10)
= a*11 + b*11 chia hết cho 11
b, abc - cba = (a*100 + b*10 + c) - (c*100 + b*10 + a)
= a*99 + 0b + c*(-99) chia hết cho 99
a, Đặt A = 810 - 89 - 88 = 88.82 - 88.81 - 88.1 = 88.(82 - 81 -1) = 88.55
Vì 55 chia hết cho 55 nên 88 chia hết cho 55 hay A chia hết cho 55.
b, Đặt B = 76 + 75 - 74 = 74.72 + 74.71 + 74.1 = 74.(72 + 71 - 1) = 74.55
Vì 55 chia hết cho 55 nên 74.55 chia hết cho 55 hay B chia hết cho 55.
c, Đặt C = 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 ( Đến dây thì tương tự như phần a bạn nhé)
d, Phần này cũng tương tự phần a.
\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}.\left(9-3-1\right)=3^{26}.5=3^{24}.9.5=3^{24}.45\)Chia hết cho 45
a) Ta có:
abcdeg = ab . 10000+cd.100+eg
= ab.9999+cd.99+ab+cd+eg
= (9999ab+99cd)+(ab+cd+eg)
Vì 9999ab + 99cd chia hết cho 11 (vì 9999 và 99 chia hết cho 11) và ab+cd+eg chia hết cho 11(theo đề bài)
nen => abcdeg chia hết cho 11
=> đpcm
b) Ta có:
10^28+8=1000..0008(27 chữ số 0)
Xét đuôi 008 chia hết cho 8 nên=> 10^28+8 chia hết cho 8(1)
Xét 10^28+8 có tổng các chữ số chia hết cho 9 nên => 10^28+8 chia hết cho 9(2)
mà 8.9=72(3)
Từ (1),(2) và (3)=> 10^28+8 chia hết cho 72
=> đpcm
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
1) gọi hai số chẵn liên tiếp là 2n và 2n+2 ( với n là số tự nhiên)
=> tích của hai số tự nhiên liên tiếp:
2n(2n+2)=2n[2(n+1)]=4n(n+1)
ta thấy: 2n(2n+1)\(⋮\)2 ; 4n(n+1)\(⋮\)4
=> 2n(2n+2)\(⋮\)8
vậy tích của hai số chẵn liên tiếp thì chia hết cho 8