Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=\left(x^2+8x+11\right)^2-16+15=\left(x^2+8x+11\right)^2-1=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)⋮\left(x+6\right)\)
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(\Rightarrow M=x^4+16x^3+86x^2+176x+120\)
\(\Rightarrow M=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(\Rightarrow M=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
Sau khi phân tích đa thức M thành nhân tử, ta thấy: M chứa thừa số x + 6 nên \(M⋮\left(x+6\right)\)
Vậy với mọi \(x\inℕ\)thì\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15⋮\left(x+6\right)\)
\(x\left(x-1\right)-3x+3=0\)
<=> \(x\left(x-1\right)-3\left(x-1\right)=0\)
<=> \(\left(x-3\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)
\(3x\left(x-2\right)+10-5x=0\)
<=> \(3x\left(x-2\right)+5\left(2-x\right)=0\)
<=> \(3x\left(x-2\right)-5\left(x-2\right)=0\)
<=> \(\left(3x-5\right)\left(x-2\right)=0\)
<=> \(\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}\)
học tốt
Bài 1: \(\left(5n+2\right)^2-4=\left(25n^2+2.2.5n+2^2\right)-4=25n^2+20n+4-4\)
\(=25n^2+20n=5n\left(5n+4\right)\)
Có \(5n\left(5n+4\right)⋮5\) (có cơ số 5n)
=> \(\left(5n+2\right)^2-4⋮5\)
Bài 2: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Đây là tích ba số tự nhiên liên tiếp nên chia hết cho 3.
Vậy: \(n^3-n⋮3\)
Bài 3: \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow x^2=4,x=3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\\x=3\end{array}\right.\)
Câu 1:
Ta có:(5n+2)2-4=25n2+20n+4-4
=5.5n2+5.4n
=5.(5n2+4n)
Vì 5.(5n2+4n) chia hêt cho 5
Suy ra:(5n+2)2-4
Câu 2:
Ta có:
n3-n=n.n2-n
=n.(n2-1)
=(n-1).n.(n+1)
Vì (n-1);n và (n+1) là ba số tự nhiên liên tiếp
Mà (n-1).n.(n+1) chia hết cho 3(1)
Và (n-1).(n+1) chia hêt cho 2(2)
Từ (1) và (2) suy ra:(n-1).n.(n+1) chia hết cho 6
Vì n và n + 1 là 2 STN liên tiếp nên đa thức có dạng:
\(\left(x^{2k}-1\right)\left(x^{2k+1}-1\right)\)
\(=\left(x^2-1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)
\(=\left(x-1\right)\left(x+1\right)P\left(x\right)\left(x-1\right)Q\left(x\right)\)
\(=\left(x+1\right)\left(x-1\right)^2P\left(x\right)Q\left(x\right)⋮\left(x+1\right)\left(x-1\right)^2\)
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
Cái này... chắc cx đc chút ít