K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NA
0
10 tháng 2 2018
b, +, Nếu p=2 thì : p^2+14 = 18 ko tm
+, Nếu p=3 thì : p^2+14 = 23 tm
+, Nếu p > 3 => p ko chia hết cho 3
=> p^2 chia 3 dư 1 => p^2+14 chia hết cho 3
Mà p^2+14 > 3 => p^2+14 là hợp số
Vậy p = 3
Tk mk nha
VT
1
ML
4 tháng 4 2017
gt= 25n + 5n - 18n - 12n
mình kí hịu đồng dư là dd nhak.
* Chứng minh gt chia het cho 7:
25 dd 4 (mod 7) => 25n dd 4n (mod 7)
18 dd 4 (mod 7) => 18n dd 4n (mod 7)
=> 25n - 18n chia hết cho 7.
chứng minh tt 5n - 12n chia hết cho 7
=> gt chia hết cho 7
* Chứng minh gt chia hết cho 13
25 dd -1 (mod 13) => 25n dd (-1)n (mod 13)
12 dd -1 (mod 13) => 12n dd (-1)n (mod 13)
=> 25n - 12n chia hết cho 13
chứng minh tt 5n - 18n chia hết cho 13
Vậy bài toán \(ĐPCM\)
A=5\(^n\).(5\(^n\)+1)−6\(^n\)(3\(^n\)+2\(^n\))⋮91
A=25\(^n\)+5\(^n\)−18\(^n\)−12\(^n\)\(\left\{{}\begin{matrix}=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\\=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\end{matrix}\right.\Rightarrow A⋮91\)
Đặt \(A=5^n.\left(5^n+1\right)-6^n.\left(3^{n+2}\right)\)
\(\Rightarrow A=\left(25^n-18^n\right)-\left(12^n-5^n\right)\)
Ta có:
\(\left\{{}\begin{matrix}25^n-18^n⋮25-18=7\\12^n-5^n⋮12-5=7\end{matrix}\right.\Leftrightarrow A⋮7\)
Ta lại có:
\(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)\)
Lại có:\(\left\{{}\begin{matrix}25^n-12^n⋮25-12=13\\18^5-5^5⋮18-5=13\end{matrix}\right.\Leftrightarrow A⋮13\)
Mà (7, 13) = 1 và 7 . 13 = 91
\(\Rightarrow A⋮91\)
Vậy \(5^n.\left(5^n+1\right)-6^n\left(3^n+2\right)⋮91\left(đpcm\right)\)