Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n^4+6n^3+11n^2+6n\)
\(=n\left(n^3+6n^2+11n+6\right)\)
\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)
\(=n\left[n^2\left(n+1\right)+5n\left(n+1\right)+6\left(n+1\right)\right]\)
\(=n\left(n+1\right)\left(n^2+5n+6\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Do đây là tích 4 số nguyên liên tiếp nên nó vừa chia hết cho \(2,3,4\Rightarrow A\) chia hết cho 24
A=n4-3n3+5n2-9n+6
=> A=n4+3n3-6n3-n2+6n2-3n-6n+6
=>A=(n4+3n3-n2-3n)+(6-6n+6n2-6n3)
=>A=[n3(n+3)-n(n+3)]+6(1-n+n2-n3)
=>A=(n3-n)(n+3)+6(1-n+n2-n3)
Mà (n3-n) chia hết cho 6
=> (n3-n)(n+3) chia hết cho 6
Lại có 6(1-n+n2-n3) chia hết cho 6
=> (n3-n)(n+3)+6(1-n+n2-n3) chia hết cho 6
=> A chia hết cho 6 (đpcm)
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d
Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮3\)
Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\) (1)
Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\) (2)
Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)
Vậy thì ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
\(\left(3^{n+1}-2.2^n\right)\left(3.3^n+2^{n+1}\right).3^{2n+2}+\left(8.2^{n-2}.3^{n+1}\right)^2\)
\(=\left(3^{n+1}-2^{n+1}\right)\left(3^{n+1}+2^{n+1}\right).3^{2n+2}+\left(2^{n+1}.3^{n+1}\right)^2\)
\(=\left(3^{2n+2}-2^{2n+2}\right).3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}-2^{2n+2}.3^{2n+2}+2^{2n+2}.3^{2n+2}\)
\(=3^{2\left(2n+2\right)}=\left(3^{2n+2}\right)^2\).
Ta thấy \(\left(3^{2n+2}\right)^2\)luôn là 1 số chính phương với mọi n\(\in\)N
Nên ta có ĐPCM.
Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ
Khi đó \(2^n-1=\left(2k+1\right)^2\) \(\left(k\inℕ^∗\right)\)
\(\Leftrightarrow2^n-1=4k^2+4k+1\)
\(\Leftrightarrow2^n=4k^2+4k+2\)
Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4
Mà n>1 nên 2n chia hết cho 4
=> vô lý => điều g/s sai
=> 2n - 1 không là 1 SCP
Bạn có thể kiểm tra lại đề o , sai đề rồi
mình tìm thấy 1 số giá trị như x=0,x=13 là snt nha bạn
\(n^3-n=n\left(n^2-1\right)\) \(=n\left(n-1\right)\left(n+1\right)\)\(=\)\(\left(n-1\right)\times n\times\left(n+1\right)\)
Ta thấy: \(\left(n-1\right),n,\left(n+1\right)\)là 3 số tự nhiên liên tiếp
mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 6
nên \(n^3-n⋮6\)
n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 )
Vì n, ( n - 1 ), ( n + 1 ) là 3 số nguyên liên tiếp nên sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3
mà 2.3 = 6 => n( n - 1 )( n + 1 ) chia hết cho 6
hay n3 - n chia hết cho 6 ( đpcm )