\(^2\)- 4m + 10 ) .x + m - 2 đồng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2020

Dễ thấy \(\left(2m^2-4m+10\right)=2\left(m-1\right)^2+8>0\forall m\)

Vậy hàm số trên đồng biến với mọi m,

29 tháng 9 2020

\(y=\left(-m^2+4m-10\right)x+4\) 

\(a=-m^2+4m-10\) 

\(=-m^2+4m-4-6\) 

\(=-\left(m-2\right)^2-6\) 

Ta có 

\(\left(m-2\right)^2\ge0\forall m\) 

\(-\left(m-2\right)^2\le0\)   

\(-\left(m-2\right)^2-6\le-6\) 

Vậy a luôn âm 

Vậy hàm số luôn nghịch biến với mọi m                                      

28 tháng 1 2015

y=(m^2 - 2.m.căn3chia+0,75 +0,25)x-1

bt trong ngoặc luôn lớn hơn 0

hay a>0

=> đpcm
 

1 tháng 2 2015

y=(m^2 - 2.m.căn3chia+0,75 +0,25)x-1

bt trong ngoặc luôn lớn hơn 0

hay a>0

5 tháng 10 2021

\(y=f\left(x\right)=21x-12\sqrt{3}x-m\)

\(=\left(21-12\sqrt{3}\right)x-m\)

vì \(21-12\sqrt{3}>0\)

nên hàm số luôn đồng biến với mọi x thuộc R 

24 tháng 10 2016

Ta có tập xác định của hàm số : \(D=\text{[}0;+\infty\text{)}\)

Gọi \(x_1,x_2\) là các giá trị thuộc tập xác định của hàm số và \(0\le x_1< x_2\)

\(\Rightarrow x_1-x_2< 0\Leftrightarrow\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)< 0\Leftrightarrow\hept{\begin{cases}\sqrt{x_1}-\sqrt{x_2}< 0\\\sqrt{x_1}+\sqrt{x_2}>0\end{cases}}\)

Xét : \(g\left(x_1\right)-g\left(x_2\right)=\left(3\sqrt{x_1}-2\right)-\left(3\sqrt{x_2}-2\right)=3\left(\sqrt{x_1}-\sqrt{x_2}\right)< 0\)

\(\Rightarrow g\left(x_1\right)< g\left(x_2\right)\)

Vậy ta có \(\hept{\begin{cases}0\le x_1< x_2\\g\left(x_1\right)< g\left(x_2\right)\end{cases}}\) => Hàm số đồng biến với mọi \(x\ge0\)(đpcm)

4 tháng 8 2016

a  đồng biến khi 5+m>0
b nghịch biến khi \(m< 1\)
c nghịch biến khi \(5-43+m^2< 0\)