K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

a)Áp dụng BĐT B.C.S:(1^2+1^2)(x^2+y^2)>=(1.x+1.y)^2>>>2(x^2+y^2)>=(x+y)^2.Sau đó chia 2 ở cả 2 vế.

Áp dụng BĐT Cô-si:(x+y)>=2√xy >>>>(x+y)^2/2>=2xy(đpcm)

b)a^2+1/(a^2+1)=a^2+1+1/(a^2+1)-1>=2-1=1(BĐT Cô-si)

c)a^2+b^2>=2ab suy ra (a^2+b^2)c>=2abc,tương tự rồi cộng lại là >=6abc nhé

d)ab/a+b<=(a+b)^2/4(a+b)(cm ở câu a)=(a+b)/4

Tương tự cộng lại được ab/a+b+bc/b+c+ca/c+a<=(a+b+b+c+c+a)/4=(a+b+c)/2(đpcm)

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

22 tháng 7 2019

Nhầm rồi nhé, thay a=b=c=1/3 thì phải ra là (10/3)^3 chứ

22 tháng 11 2015

sorry, em mới học lớp 6 thui

22 tháng 11 2015

mẹ ơi con chưa thấy dạng nào thế này

4 tháng 8 2017

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

cauchy-schwarz: 

\(VT=\frac{c^2}{ac^2+bc^2}+\frac{a^2}{a^2b+a^2c}+\frac{b^2}{b^2c+b^2a}+\frac{\sqrt[3]{a^2b^2c^2}}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) 

23 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)

\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)

\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1) 

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)

\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2) 

Từ (1) và (2) 

\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm ) 

Dấu " = " xảy ra khi \(a=b=c=1\)

23 tháng 3 2017

mình chịu bó tay

24 tháng 3 2017

sao lại thế -.-

AH
Akai Haruma
Giáo viên
28 tháng 6 2024

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\([(a+\frac{1}{a})^2+(b+\frac{1}{b})^2](1^2+1^2)\geq (a+\frac{1}{a}+b+\frac{1}{b})^2=(1+\frac{1}{a}+\frac{1}{b})^2\)

\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\)

Tiếp tục áp dụng BDDT Bunhiacopxky:

$\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}=4$

\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\geq \frac{1}{2}(1+4)^2=12,5\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$